LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232825 91177308-0d34-0410-b5e6-96231b3b80d8
The input offset to needsFrameBaseReg is a negative value below the top of the
stack frame, but when converting to a positive offset from the bottom of the
stack frame this value was negated, causing the final offset to be too large
by twice the input offset's magnitude. Fix that by not negating the offset.
Patch by John Brawn
Differential Revision: http://reviews.llvm.org/D8316
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232513 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232184 91177308-0d34-0410-b5e6-96231b3b80d8
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231082 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb-1 only allows SP-based LDR and STR to be word-sized, and SP-base LDR,
STR, and ADD only allow offsets that are a multiple of 4. Make some changes
to better make use of these instructions:
* Use word loads for anyext byte and halfword loads from the stack.
* Enforce 4-byte alignment on objects accessed in this way, to ensure that
the offset is valid.
* Do the same for objects whose frame index is used, in order to avoid having
to use more than one ADD to generate the frame index.
* Correct how many bits of offset we think AddrModeT1_s has.
Patch by John Brawn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230496 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
with fixes. Includes the move of tests for llvm-objdump for universal files to an X86
directory. And the fix where it was failing on linux Rafael tracked down with asan.
I had both Jim Grosbach and Adam Hemet look over the second fix since I could not
set up asan to reproduce with the old version but not with the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223416 91177308-0d34-0410-b5e6-96231b3b80d8
This was motivated by a bug which caused code like this to be
miscompiled:
declare void @take_ptr(i8*)
define void @test() {
%addr1.32 = alloca i8
%addr2.32 = alloca i32, i32 1028
call void @take_ptr(i8* %addr1)
ret void
}
This was emitting the following assembly to get the value of %addr1:
add r0, sp, #1020
add r0, r0, #8
However, "add r0, r0, #8" is not a valid Thumb1 instruction, and this
could not be assembled. The generated object file contained this,
resulting in r0 holding SP+8 rather tha SP+1028:
add r0, sp, #1020
add r0, sp, #8
This function looked like it could have caused miscompilations for
other combinations of registers and offsets (though I don't think it is
currently called with these), and the heuristic it used did not match
the emitted code in all cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222125 91177308-0d34-0410-b5e6-96231b3b80d8
register class tGPRRegClass if the target is thumb1.
This commit fixes a crash that occurs during register allocation which was
triggered when a virtual register defined by an inline-asm instruction had to
be spilled.
rdar://problem/18740489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221178 91177308-0d34-0410-b5e6-96231b3b80d8
This function can, for some offsets from the SP, split one instruction
into two. Since it re-uses the original instruction as the first
instruction of the result, we need ensure its result register is not
marked as dead before we use it in the second instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220194 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
If it's safe to clobber the condition flags, we can do a few extra things:
it's then possible to reset the base register writeback using a SUBS, so
we can try to merge even if the base register isn't dead after the merged
instruction.
This is effectively a (heavily bug-fixed) rewrite of r208992.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218386 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216294 91177308-0d34-0410-b5e6-96231b3b80d8
There are two add-immediate instructions in Thumb1: tADDi8 and tADDi3. Only
the latter supports using different source and destination registers, so
whenever we materialize a new base register (at a certain offset) we'd do
so by moving the base register value to the new register and then adding in
place. This patch changes the code to use a single tADDi3 if the offset is
small enough to fit in 3 bits.
Differential Revision: http://reviews.llvm.org/D5006
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216193 91177308-0d34-0410-b5e6-96231b3b80d8
In a previous iteration of the pass, we would try to compensate for
writeback by updating later instructions and/or inserting a SUBS to
reset the base register if necessary.
Since such a SUBS sets the condition flags it's not generally safe to do
this. For now, only merge LDR/STRs if there is no writeback to the base
register (LDM that loads into the base register) or the base register is
killed by one of the merged instructions. These cases are clear wins
both in terms of instruction count and performance.
Also add three new test cases, and update the existing ones accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215729 91177308-0d34-0410-b5e6-96231b3b80d8
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214614 91177308-0d34-0410-b5e6-96231b3b80d8
When targetting Thumb1 on a processor which has a VFP unit (which
is not accessible from Thumb1), we were converting the fastcc calling
convention to AAPCS-VFP, which is not possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210889 91177308-0d34-0410-b5e6-96231b3b80d8
Moritz's changes have improved codegen a lot, but further testing showed significant correctness problems. Disable by default until these have been worked out.
Patch by Moritz Roth!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210789 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the basic block was searched for future uses of the base register,
and if necessary any writeback to the base register was reset using a SUB
instruction (e.g. before calling a function) just before such a use. However,
this step happened *before* the merged LDM/STM instruction was built. So if
there was (e.g.) a function call directly after the not-yet-formed LDM/STM,
the pass would first insert a SUB instruction to reset the base register,
and then (at the same location, incorrectly) insert the LDM/STM itself.
This patch fixes PR19972. Patch by Moritz Roth.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210542 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209335 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205997 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike other v6+ processors, cortex-m0 never supports unaligned accesses.
From the v6m ARM ARM:
"A3.2 Alignment support: ARMv6-M always generates a fault when an unaligned
access occurs."
rdar://16491560
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205452 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201333 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201237 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a crash in SjLjEHPrepare::lowerIncomingArguments caused by treating
VectorType like an aggregate. It's first-class!
<rdar://problem/15854596>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199768 91177308-0d34-0410-b5e6-96231b3b80d8