Module flags are key-value pairs associated with the module. They include a
'behavior' value, indicating how module flags react when mergine two
files. Normally, it's just the union of the two module flags. But if two module
flags have the same key, then the resulting flags are dictated by the behaviors.
Allowable behaviors are:
Error
Emits an error if two values disagree.
Warning
Emits a warning if two values disagree.
Require
Emits an error when the specified value is not present
or doesn't have the specified value. It is an error for
two (or more) llvm.module.flags with the same ID to have
the Require behavior but different values. There may be
multiple Require flags per ID.
Override
Uses the specified value if the two values disagree. It
is an error for two (or more) llvm.module.flags with the
same ID to have the Override behavior but different
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150300 91177308-0d34-0410-b5e6-96231b3b80d8
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149800 91177308-0d34-0410-b5e6-96231b3b80d8
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149481 91177308-0d34-0410-b5e6-96231b3b80d8
The pass pointer should never be referenced after sending it to
schedulePass(), which may delete the pass. To fix this bug I had to
clean up the design leading to more goodness.
You may notice now that any non-analysis pass is printed. So things like loop-simplify and lcssa show up, while target lib, target data, alias analysis do not show up. Normally, analysis don't mutate the IR, but you can now check this by using both -print-after and -print-before. The effects of analysis will now show up in between the two.
The llc path is still in bad shape. But I'll be improving it in my next checkin. Meanwhile, print-machineinstrs still works the same way. With print-before/after, many llc passes that were not printed before now are, some of these should be converted to analysis. A few very important passes, isel and scheduler, are not properly initialized, so not printed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149480 91177308-0d34-0410-b5e6-96231b3b80d8
kicking in the big win of ConstantDataArray. As part of this, change
the implementation of GetConstantStringInfo in ValueTracking to work
with ConstantDataArray (and not ConstantArray) making it dramatically,
amazingly, more efficient in the process and renaming it to
getConstantStringInfo.
This keeps around a GetConstantStringInfo entrypoint that (grossly)
forwards to getConstantStringInfo and constructs the std::string
required, but existing clients should move over to
getConstantStringInfo instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149351 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantExpr::getWithOperandReplaced and ConstantExpr::replaceUsesOfWithOnConstant
in terms of ConstantExpr::getWithOperands. While we're at it,
make sure that ConstantExpr::getWithOperands covers all instructions: it was
missing insert/extractvalue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149076 91177308-0d34-0410-b5e6-96231b3b80d8
more robust) ways to do what it was doing now. Also, add static methods
for decoding a ShuffleVector mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149028 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantVector. Fix some outright bugs in the implementation of
ConstantArray and Constant struct, which would cause us to not make
one big UndefValue when asking for an array/struct with all undef
elements. Enhance Constant::isAllOnesValue to work with
ConstantDataVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149021 91177308-0d34-0410-b5e6-96231b3b80d8
to reduce the number of cast<>'s we have. This allows someone to use
things like Ty->getVectorNumElements() instead of
cast<VectorType>(Ty)->getNumElements() when you know that a type is a
vector.
It would be a great general cleanup to move the codebase to use these,
I will do so in the code I'm touching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148999 91177308-0d34-0410-b5e6-96231b3b80d8
Original log:
Introduce a new ConstantVector::getSplat constructor function to
simplify a really common case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148906 91177308-0d34-0410-b5e6-96231b3b80d8
did something extremely surprising, and shadowed actually useful
implementations that had completely different behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148898 91177308-0d34-0410-b5e6-96231b3b80d8
add a ConstantDataArray::getString method that corresponds to the (to be
removed) StringRef version of ConstantArray::get, but is dramatically more
efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148804 91177308-0d34-0410-b5e6-96231b3b80d8
and clean up some other misc stuff. Unlike ConstantArray, we will
prefer to emit .fill directives for "String" arrays that all have
the same value, since they are denser than emitting a .ascii
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148793 91177308-0d34-0410-b5e6-96231b3b80d8
same semantics as ConstantArray's but much more efficient because they
don't have to return std::string's. The ConstantArray methods will
eventually be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148792 91177308-0d34-0410-b5e6-96231b3b80d8
classes, per PR1324. Not all of their helper functions are implemented,
nothing creates them, and the rest of the compiler doesn't handle them yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148741 91177308-0d34-0410-b5e6-96231b3b80d8
using OwningPtr. OwningPtr would barf when the densemap had to reallocate,
which doesn't appear to happen on the regression test suite, but obviously
happens in real life :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148700 91177308-0d34-0410-b5e6-96231b3b80d8
returns false in the event the computation feeding into the pointer is
unreachable, which maybe ought to be true -- but this is at least consistent
with undef->isDereferenceablePointer().) Fixes PR11825!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148671 91177308-0d34-0410-b5e6-96231b3b80d8
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148262 91177308-0d34-0410-b5e6-96231b3b80d8
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147861 91177308-0d34-0410-b5e6-96231b3b80d8
See PR11652. Trying to add this assert to
setSubclassData() itself actually prevented
the miscompile entirely, so it has to be here.
This makes the source of the bug more obvious
than the other asserts triggering later on did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147390 91177308-0d34-0410-b5e6-96231b3b80d8
there is non of that type to remove. This fixes a crasher in the particular
case where the instruction has metadata but no metadata storage in the context
(this is only possible if the instruction has !dbg but no other metadata info).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147285 91177308-0d34-0410-b5e6-96231b3b80d8
"half precision" floating-point with a first-class type.
This patch adds basic IR support (but not codegen support).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146786 91177308-0d34-0410-b5e6-96231b3b80d8
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
indicates whether the intrinsic has a defined result for a first
argument equal to zero. This will eventually allow these intrinsics to
accurately model the semantics of GCC's __builtin_ctz and __builtin_clz
and the X86 instructions (prior to AVX) which implement them.
This patch merely sets the stage by extending the signature of these
intrinsics and establishing auto-upgrade logic so that the old spelling
still works both in IR and in bitcode. The upgrade logic preserves the
existing (inefficient) semantics. This patch should not change any
behavior. CodeGen isn't updated because it can use the existing
semantics regardless of the flag's value.
Note that this will be followed by API updates to Clang and DragonEgg.
Reviewed by Nick Lewycky!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146357 91177308-0d34-0410-b5e6-96231b3b80d8
- Calling getUser in a loop is much more expensive than iterating over a few instructions.
- Use it instead of the open-coded loop in AddrModeMatcher.
- 5% speedup on ARMDisassembler.cpp Release builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145810 91177308-0d34-0410-b5e6-96231b3b80d8
trampoline forms. Both of these were correct in LLVM 3.0, and we don't
need to support LLVM 2.9 and earlier in mainline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145174 91177308-0d34-0410-b5e6-96231b3b80d8
I think this is the last of autoupgrade that can be removed in 3.1.
Can the atomic upgrade stuff also go?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145169 91177308-0d34-0410-b5e6-96231b3b80d8