my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62212 91177308-0d34-0410-b5e6-96231b3b80d8
There might be more dead code, but with llvm-gcc bootstrap broken on linux x86-64 it is had to test :-(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62088 91177308-0d34-0410-b5e6-96231b3b80d8
Also future proof the scheduler to handle "normal" physical register dependencies. The code is not exercised yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62074 91177308-0d34-0410-b5e6-96231b3b80d8
opcode on each delegation.
Instead the information is cached on construction and the cached flag used thereafter.
Introduced two predicates: isCall and isInvoke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62055 91177308-0d34-0410-b5e6-96231b3b80d8
Now Users request DwarfWriter through getAnalysisUsage() instead of creating an instance of DwarfWriter object directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61955 91177308-0d34-0410-b5e6-96231b3b80d8
functions that don't already have a (dynamic) alloca.
Dynamic allocas cause inefficient codegen and we shouldn't
propagate this (behavior follows gcc). Two existing tests
assumed such inlining would be done; they are hacked by
adding an alloca in the caller, preserving the point of
the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61946 91177308-0d34-0410-b5e6-96231b3b80d8
StringMapEntryInitializer classes. Leave it for the compiler to figure out what
the type is and what "0" should be transformed into.
* Un-disable the unit tests which test the StringMapEntryInitializer class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61922 91177308-0d34-0410-b5e6-96231b3b80d8
v1024 = EDI // not killed
=
= EDI
One possible solution is for the coalescer to examine the sub-register live intervals in the same manner as the physical register. Another possibility is to examine defs and uses (when needed) of sub-registers. Both solutions are too expensive. For now, look for "short virtual intervals" and scan instructions to look for conflict instead.
This is a small win on x86-64. e.g. It shaves 403.gcc by ~80 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61847 91177308-0d34-0410-b5e6-96231b3b80d8
to handle LLVMMatchType intrinsic parameters, and by adding new subclasses
of LLVMMatchType to match vector types with integral elements that are
either twice as wide or half as wide as the elements of the matched type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61834 91177308-0d34-0410-b5e6-96231b3b80d8
as template arguments instead of as instance variables, exposing more
optimization opportunities to the compiler earlier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61776 91177308-0d34-0410-b5e6-96231b3b80d8
own OpActionsCapacity magic number; it can just use ISD::BUILTIN_OP_END,
as long as it takes care to round up when needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61733 91177308-0d34-0410-b5e6-96231b3b80d8