Commit Graph

2701 Commits

Author SHA1 Message Date
e2b5bcf781 [PM/AA] Cleanup comments, formatting, and organization of the AA
interface prior to making more substantial and invasive changes.

No functionality changed, and should hopefully keep subsequent patches
as clean and focused as possible in addition to making the comments and
such more clear.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242964 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-22 23:16:02 +00:00
52ab0bc417 [PM/AA] Extract the ModRef enums from the AliasAnalysis class in
preparation for de-coupling the AA implementations.

In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.

I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.

I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.

Differential Revision: http://reviews.llvm.org/D10564

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242963 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-22 23:15:57 +00:00
380de5479c Fix -Wextra-semi warnings.
Patch by Eugene Zelenko!

Differential Revision: http://reviews.llvm.org/D11400

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242930 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-22 20:46:11 +00:00
ac17c4d9b5 [PM/AA] Remove the last of the legacy update API from AliasAnalysis as
part of simplifying its interface and usage in preparation for porting
to work with the new pass manager.

Note that this will likely expose that we have dead arguments, members,
and maybe even pass requirements for AA. I'll be cleaning those up in
seperate patches. This just zaps the actual update API.

Differential Revision: http://reviews.llvm.org/D11325

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242881 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-22 09:49:59 +00:00
c1a9c38190 [PM/AA] Remove the addEscapingUse update API that won't be easy to
directly model in the new PM.

This also was an incredibly brittle and expensive update API that was
never fully utilized by all the passes that claimed to preserve AA, nor
could it reasonably have been extended to all of them. Any number of
places add uses of values. If we ever wanted to reliably instrument
this, we would want a callback hook much like we have with ValueHandles,
but doing this for every use addition seems *extremely* expensive in
terms of compile time.

The only user of this update mechanism is GlobalsModRef. The idea of
using this to keep it up to date doesn't really work anyways as its
analysis requires a symmetric analysis of two different memory
locations. It would be very hard to make updates be sufficiently
rigorous to *guarantee* symmetric analysis in this way, and it pretty
certainly isn't true today.

However, folks have been using GMR with this update for a long time and
seem to not be hitting the issues. The reported issue that the update
hook fixes isn't even a problem any more as other changes to
GetUnderlyingObject worked around it, and that issue stemmed from *many*
years ago. As a consequence, a prior patch provided a flag to control
the unsafe behavior of GMR, and this patch removes the update mechanism
that has questionable compile-time tradeoffs and is causing problems
with moving to the new pass manager. Note the lack of test updates --
not one test in tree actually requires this update, even for a contrived
case.

All of this was extensively discussed on the dev list, this patch will
just enact what that discussion decides on. I'm sending it for review in
part to show what I'm planning, and in part to show the *amazing* amount
of work this avoids. Every call to the AA here is something like three
to six indirect function calls, which in the non-LTO pipeline never do
any work! =[

Differential Revision: http://reviews.llvm.org/D11214

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242605 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-18 03:26:46 +00:00
1dd3d83c5e Add new constructors for LoopInfo/DominatorTree/BFI/BPI
Those new constructors make it more natural to construct an object for a function. For example, previously to build a LoopInfo for a function, we need four statements:

DominatorTree DT;
LoopInfo LI;
DT.recalculate(F);
LI.analyze(DT);

Now we only need one statement:

LoopInfo LI(DominatorTree(F));

http://reviews.llvm.org/D11274



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242486 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 23:23:35 +00:00
cb19d4c525 [SCEV][NFC] Use triple-slash (///) for comment.
Makes the comments for proveNoWrapByVaryingStart consistent with the
rest of ScalarEvolution.h

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242451 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 22:08:37 +00:00
204b59072d Rename LoopInfo::Analyze() to LoopInfo::analyze() and turn its parameter type to const&.
The benefit of turning the parameter of LoopInfo::analyze() to const& is that it now can accept a rvalue.

http://reviews.llvm.org/D11250



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242426 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 18:23:57 +00:00
45646075c3 [LAA] Split out a helper to check the pointer partitions, NFC
This is made a static public member function to allow the transition of
this logic from LAA to LoopDistribution.  (Technically, it could be an
implementation-local static function but then it would not be accessible
from LoopDistribution.)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242376 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 02:48:05 +00:00
102d0382d4 Remove a private member of BranchProbabilityInfo which is not used at all.
The member to be removed is LoopInfo *LI.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242355 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-15 23:20:34 +00:00
8770f7af5f Create a wrapper pass for BranchProbabilityInfo.
This new wrapper pass is useful when we want to do branch probability analysis conditionally (e.g. only in PGO mode) but don't want to add one more pass dependence.

http://reviews.llvm.org/D11241



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242349 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-15 22:48:29 +00:00
2fa118d257 Rename doFunction() in BFI to calculate() and change its parameters from pointers to references.
http://reviews.llvm.org/D11196



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242322 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-15 19:58:26 +00:00
d5892380e1 Create a wrapper pass for BlockFrequencyInfo.
This is useful when we want to do block frequency analysis
conditionally (e.g. only in PGO mode) but don't want to add
one more pass dependence.

Patch by congh.
Approved by dexonsmith.
Differential Revision: http://reviews.llvm.org/D11196


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242248 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-14 23:40:50 +00:00
c2944f6690 [LAA] Turn RuntimePointerChecking into a class, start hiding things, NFC
The goal is to start hiding internal APIs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242220 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-14 22:32:52 +00:00
00b675df73 [LAA] Introduce RuntimePointerChecking::PointerInfo, NFC
Turn this structure-of-arrays (i.e. the various pointer attributes) into
array-of-structures.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242219 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-14 22:32:50 +00:00
944e082905 [LAA] Lift RuntimePointerCheck out of LoopAccessInfo, NFC
I am planning to add more nested classes inside RuntimePointerCheck so
all these triple-nesting would be hard to follow.

Also rename it to RuntimePointerChecking (i.e. append 'ing').

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242218 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-14 22:32:44 +00:00
890c16626f [CodeGen] Force emission of personality directive if explicitly specified
Summary:
Before this change, personality directives were not emitted
if there was no invoke left in the function (of course until
recently this also meant that we couldn't know what
the personality actually was). This patch forces personality directives
to still be emitted, unless it is known to be a noop in the absence of
invokes, or the user explicitly specified `nounwind` (and not
`uwtable`) on the function.

Reviewers: majnemer, rnk

Subscribers: rnk, llvm-commits

Differential Revision: http://reviews.llvm.org/D10884

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242185 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-14 19:22:51 +00:00
0ed5091742 Remove macro guards for extern template instantiations.
This is a C++11 feature that both GCC and MSVC have supported as ane extension
long before C++11 was approved.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242042 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-13 17:21:31 +00:00
8e7e3650af [LSR] don't attempt to promote ephemeral values to indvars
Summary:
This at least saves compile time. I also encountered a case where
ephemeral values affect whether other variables are promoted, causing
performance issues. It may be a bug in LSR, but I didn't manage to
reduce it yet. Anyhow, I believe it's in general not worth considering
ephemeral values in LSR.

Reviewers: atrick, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D11115

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242011 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-13 03:28:53 +00:00
46b13dd880 [InstSimplify] Teach InstSimplify how to simplify extractelement
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242008 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-13 01:15:53 +00:00
5501985a58 [InstSimplify] Teach InstSimplify how to simplify extractvalue
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242007 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-13 01:15:46 +00:00
4e947d8111 Move getStrideFromPointer and friends from LoopVectorize to VectorUtils
The following functions are moved from the LoopVectorizer to VectorUtils:

  - getGEPInductionOperand
  - stripGetElementPtr
  - getUniqueCastUse
  - getStrideFromPointer

These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.

Patch by Ashutosh Nema!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241980 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-11 10:52:42 +00:00
6690dbffe0 Add argmemonly attribute.
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.

Differential Revision: http://reviews.llvm.org/D10398



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241979 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-11 10:30:36 +00:00
c51f300513 [PM/AA] Completely remove the AliasAnalysis::copyValue interface.
No in-tree alias analysis used this facility, and it was not called in
any particularly rigorous way, so it seems unlikely to be correct.

Note that one of the only stateful AA implementations in-tree,
GlobalsModRef is completely broken currently (and any AA passes like it
are equally broken) because Module AA passes are not effectively
invalidated when a function pass that fails to update the AA stack runs.

Ultimately, it doesn't seem like we know how we want to build stateful
AA, and until then trying to support and maintain correctness for an
untested API is essentially impossible. To that end, I'm planning to rip
out all of the update API. It can return if and when we need it and know
how to build it on top of the new pass manager and as part of *tested*
stateful AA implementations in the tree.

Differential Revision: http://reviews.llvm.org/D10889

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241975 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-11 04:39:00 +00:00
b0927bee8e [InstSimplify] Fold away ord/uno fcmps when nnan is present.
This is important to fold away the slow case of complex multiplies
emitted by clang.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241911 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-10 14:02:02 +00:00
966e6ca1ac Make TargetTransformInfo keeping a reference to the Module DataLayout
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.

Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11021

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241774 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-09 02:08:42 +00:00
8bde857088 [LAA] Merge memchecks for accesses separated by a constant offset
Summary:
Often filter-like loops will do memory accesses that are
separated by constant offsets. In these cases it is
common that we will exceed the threshold for the
allowable number of checks.

However, it should be possible to merge such checks,
sice a check of any interval againt two other intervals separated
by a constant offset (a,b), (a+c, b+c) will be equivalent with
a check againt (a, b+c), as long as (a,b) and (a+c, b+c) overlap.
Assuming the loop will be executed for a sufficient number of
iterations, this will be true. If not true, checking against
(a, b+c) is still safe (although not equivalent).

As long as there are no dependencies between two accesses,
we can merge their checks into a single one. We use this
technique to construct groups of accesses, and then check
the intervals associated with the groups instead of
checking the accesses directly.

Reviewers: anemet

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10386

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241673 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-08 09:16:33 +00:00
ddf4c989ee Remove JumpInstrTableInfo.h as it is no longer used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241517 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-06 22:55:20 +00:00
5d5b914c59 Add a routine to TargetTransformInfo that will allow targets to look
at the attributes on a function to determine whether or not to allow
inlining.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241220 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-02 01:11:47 +00:00
032d56baf2 Move delinearization from SCEVAddRecExpr to ScalarEvolution
The expressions we delinearize do not necessarily have to have a SCEVAddRecExpr
at the outermost level. At this moment, the additional flexibility  is not
exploited in LLVM itself, but in Polly we will soon soonish use this
functionality. For LLVM, this change should not affect existing functionality
(which is covered by test/Analysis/Delinearization/)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240952 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-29 14:42:48 +00:00
26bc54301b Move VectorUtils from Transforms to Analysis to correct layering violation
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240804 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-26 18:02:52 +00:00
1b6ca9d0cc [CaptureTracking] Avoid long compilation time on large basic blocks
CaptureTracking becomes very expensive in large basic blocks while
calling PointerMayBeCaptured. PointerMayBeCaptured scans the BB the
number of times equal to the number of uses of 'BeforeHere', which is
currently capped at 20 and bails out with Tracker->tooManyUses().

The bottleneck here is the number of calls to PointerMayBeCaptured * the
basic block scan. In a testcase with a 82k instruction BB,
PointerMayBeCaptured is called 130k times, leading to 'shouldExplore'
taking 527k runs, this currently takes ~12min.

To fix this we locally (within PointerMayBeCaptured) number the
instructions in the basic block using a DenseMap to cache instruction
positions/numbers. We build the cache incrementally every time we need
to scan an unexplored part of the BB, improving compile time to only
take ~2min.

This triggers in the flow: DeadStoreElimination -> MepDepAnalysis ->
CaptureTracking.

Side note: after multiple runs in the test-suite I've seen no
performance nor compile time regressions, but could note a couple of
compile time improvements:

Performance Improvements - Compile Time Delta Previous  Current StdDev
SingleSource/Benchmarks/Misc-C++/bigfib -4.48%  0.8547  0.8164  0.0022
MultiSource/Benchmarks/TSVC/LoopRerolling-dbl/LoopRerolling-dbl -1.47% 1.3912  1.3707  0.0056

Differential Revision: http://reviews.llvm.org/D7010

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240560 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-24 17:53:17 +00:00
cd52a7a381 Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-23 09:49:53 +00:00
1e3557de0d [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.

Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.

My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.

[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.

Differential Revision: http://reviews.llvm.org/D10495

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240255 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-22 02:16:51 +00:00
ab6ddadac7 [PM/AA] Rework the names and comments in AliasSetTracker to more
accurately describe what is being tracked.

While these two enums do track mod/ref information and aliasing
information, they don't represent the exact same things as either the
mod/ref enums or the alias result enum in AA. They're definitions are
dominated by the structure of their lattice and the bit's various
semantics. This patch just calls them what they are and tries to spell
out usefully distinct names for these things.

This will clear the path for using a raw unscoped enum to represent some
of these concepts across LLVM's analysis library.

No functionality changed here.

Differential Revision: http://reviews.llvm.org/D10494

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240254 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-22 02:12:52 +00:00
cf0db29df2 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-19 15:57:42 +00:00
933d2bd391 Fix "the the" in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240112 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-19 01:53:21 +00:00
aabacb67c3 [CallGraph] Teach the CallGraph about non-leaf intrinsics.
Summary:
Currently intrinsics don't affect the creation of the call graph.
This is not accurate with respect to statepoint and patchpoint
intrinsics -- these do call (or invoke) LLVM level functions.

This change fixes this inconsistency by adding a call to the external
node for call sites that call these non-leaf intrinsics.  This coupled
with the fact that these intrinsics also escape the function pointer
they call gives us a conservatively correct call graph.

Reviewers: reames, chandlerc, atrick, pgavlin

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10526

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240039 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-18 19:28:26 +00:00
cc714e2142 Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239940 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 20:52:32 +00:00
5057ee8357 Add documentation for new backedge mass propagation in irregular loops.
Tweak test cases and rename headerIndexFor -> getHeaderIndex.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239915 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 16:28:22 +00:00
2cdca0c4e4 [PM/AA] Remove the UnknownSize static member from AliasAnalysis.
This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239886 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 07:21:38 +00:00
4d7ed3960c [PM/AA] Remove the Location typedef from the AliasAnalysis class now
that it is its own entity in the form of MemoryLocation, and update all
the callers.

This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239885 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 07:18:54 +00:00
c179a41142 [PM/AA] Split the location computation out of getArgLocation so the
virtual interface on AliasAnalysis only deals with ModRef information.

This interface was both computing memory locations by using TLI and
other tricks to estimate the size of memory referenced by an operand,
and computing ModRef information through similar investigations. This
change narrows the scope of the virtual interface on AliasAnalysis
slightly.

Note that all of this code could live in BasicAA, and be done with
a single investigation of the argument, if it weren't for the fact that
the generic code in AliasAnalysis::getModRefBehavior for a callsite
calls into the virtual aspect of (now) getArgModRefInfo. But this
patch's arrangement seems a not terrible way to go for now.

The other interesting wrinkle is how we could reasonably extend LLVM
with support for custom memory location sizes and mod/ref behavior for
library routines. After discussions with Hal on the review, the
conclusion is that this would be best done by fleshing out the much
desired support for extensions to TLI, and support these types of
queries in that interface where we would likely be doing other library
API recognition and analysis.

Differential Revision: http://reviews.llvm.org/D10259

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239884 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 07:12:40 +00:00
3f53fc8f5f Fix PR 23525 - Separate header mass propagation in irregular loops.
Summary:
When propagating mass through irregular loops, the mass flowing through
each loop header may not be equal. This was causing wrong frequencies
to be computed for irregular loop headers.

Fixed by keeping track of masses flowing through each of the headers in
an irregular loop. To do this, we now keep track of per-header backedge
weights. After the loop mass is distributed through the loop, the
backedge weights are used to re-distribute the loop mass to the loop
headers.

Since each backedge will have a mass proportional to the different
branch weights, the loop headers will end up with a more approximate
weight distribution (as opposed to the current distribution that assumes
that every loop header is the same).

Reviewers: dexonsmith

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10348

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239843 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-16 19:10:58 +00:00
a420a14276 [LAA] Fix estimation of number of memchecks
Summary:
We need to add a runtime memcheck for pair of accesses (x,y) where at least one of x and y
are writes.
 
Assuming we have w writes and r reads, currently this number is  estimated as being
w* (w+r-1). This estimation will count (write,write) pairs twice and will overestimate
the number of checks required.

This change adds a getNumberOfChecks method to RuntimePointerCheck, which
will count the number of runtime checks needed (similar in implementation to
needsAnyChecking) and uses it to produce the correct number of runtime checks.

Test Plan:
llvm test suite
spec2k
spec2k6

Performance results: no changes observed (not surprising since the formula for 1 writer is basically the same, which would covers most cases - at least with the current check limit).

Reviewers: anemet

Reviewed By: anemet

Subscribers: mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D10217

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239295 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-08 10:27:06 +00:00
43be1d53d1 [LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
       a = A[i];         // load of even element
       b = A[i+1];       // load of odd element
       ...               // operations on a, b, c, d
       A[i] = c;         // store of even element
       A[i+1] = d;       // store of odd element
     }

  The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
     %wide.vec = load <8 x i32>, <8 x i32>* %ptr
     %vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
     %vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>

  The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
     %interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7> 
     store <8 x i32> %interleaved.vec, <8 x i32>* %ptr

This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'. 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239291 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-08 06:39:56 +00:00
4e8236ed75 Add isLegalAddressingMode address space argument to TTI
Update to match the TLI version, and remove the TLI version's
default argument.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239260 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-07 20:12:03 +00:00
862b2ad204 [Unroll] Rework the naming and structure of the new unroll heuristics.
The new naming is (to me) much easier to understand. Here is a summary
of the new state of the world:

- '*Threshold' is the threshold for full unrolling. It is measured
  against the estimated unrolled cost as computed by getUserCost in TTI
  (or CodeMetrics, etc). We will exceed this threshold when unrolling
  loops where unrolling exposes a significant degree of simplification
  of the logic within the loop.
- '*PercentDynamicCostSavedThreshold' is the percentage of the loop's
  estimated dynamic execution cost which needs to be saved by unrolling
  to apply a discount to the estimated unrolled cost.
- '*DynamicCostSavingsDiscount' is the discount applied to the estimated
  unrolling cost when the dynamic savings are expected to be high.

When actually analyzing the loop, we now produce both an estimated
unrolled cost, and an estimated rolled cost. The rolled cost is notably
a dynamic estimate based on our analysis of the expected execution of
each iteration.

While we're still working to build up the infrastructure for making
these estimates, to me it is much more clear *how* to make them better
when they have reasonably descriptive names. For example, we may want to
apply estimated (from heuristics or profiles) dynamic execution weights
to the *dynamic* cost estimates. If we start doing that, we would also
need to track the static unrolled cost and the dynamic unrolled cost, as
only the latter could reasonably be weighted by profile information.

This patch is sadly not without functionality change for the new unroll
analysis logic. Buried in the heuristic management were several things
that surprised me. For example, we never subtracted the optimized
instruction count off when comparing against the unroll heursistics!
I don't know if this just got lost somewhere along the way or what, but
with the new accounting of things, this is much easier to keep track of
and we use the post-simplification cost estimate to compare to the
thresholds, and use the dynamic cost reduction ratio to select whether
we can exceed the baseline threshold.

The old values of these flags also don't necessarily make sense. My
impression is that none of these thresholds or discounts have been tuned
yet, and so they're just arbitrary placehold numbers. As such, I've not
bothered to adjust for the fact that this is now a discount and not
a tow-tier threshold model. We need to tune all these values once the
logic is ready to be enabled.

Differential Revision: http://reviews.llvm.org/D9966

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239164 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-05 17:01:43 +00:00
2cdee49937 Tidy comment. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239090 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-04 20:49:52 +00:00
dc967a97df [PM/AA] Start refactoring AliasAnalysis to remove the analysis group and
port it to the new pass manager.

All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.

This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.

There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.

Differential Revision: http://reviews.llvm.org/D10228

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239003 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-04 02:03:15 +00:00