utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
This teaches CoverageMapping::getCoveredFunctions to filter to a
particular file and uses that to replace most of the logic found in
llvm-cov report.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221962 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch extends the 'show' and 'merge' commands in llvm-profdata to handle
sample PGO formats. Using the 'merge' command it is now possible to convert
one sample PGO format to another.
The only format that is currently not working is 'gcc'. I still need to
implement support for it in lib/ProfileData.
The changes in the sample profile support classes are needed for the
merge operation.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221032 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch finishes up support for handling sampling profiles in both
text and binary formats. The new binary format uses uleb128 encoding to
represent numeric values. This makes profiles files about 25% smaller.
The profile writer class can write profiles in the existing text and the
new binary format. In subsequent patches, I will add the capability to
read (and perhaps write) profiles in the gcov format used by GCC.
Additionally, I will be adding support in llvm-profdata to manipulate
sampling profiles.
There was a bit of refactoring needed to separate some code that was in
the reader files, but is actually common to both the reader and writer.
The new test checks that reading the same profile encoded as text or
raw, produces the same results.
Reviewers: bogner, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6000
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220915 91177308-0d34-0410-b5e6-96231b3b80d8
Every time we were adding or removing an expression when generating a
coverage mapping we were doing a linear search to try and deduplicate
the list. The indices in the list are important, so we can't just
replace it by a DenseMap entirely, but an auxilliary DenseMap for fast
lookup massively improves the performance issues I was seeing here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218892 91177308-0d34-0410-b5e6-96231b3b80d8
When I was preparing r218879 for commit, I removed an early return
that I decided was just noise. It wasn't. This is r218879 no-crash
edition.
This reverts commit r218881, reapplying r218879.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218887 91177308-0d34-0410-b5e6-96231b3b80d8
The Terms vector here represented a polynomial of of all possible
counters, and is used to simplify expressions when generating coverage
mapping. There are a few problems with this:
1. Keeping the vector as a member is wasteful, since we clear it every
time we use it.
2. Most expressions refer to a subset of the counters, so we end up
iterating over a large number of zeros doing nothing a lot of the
time.
This updates the user of the vector to store the terms locally, and
uses a sort and combine approach so that we only operate on counters
that are actually used in a given expression. For small cases this
makes very little difference, but in cases with a very large number of
counted regions this is a significant performance fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218879 91177308-0d34-0410-b5e6-96231b3b80d8
If we have multiple coverage counts for the same segment, we need to
add them up rather than arbitrarily choosing one. This fixes that and
adds a test with template instantiations to exercise it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218432 91177308-0d34-0410-b5e6-96231b3b80d8
This splits the logic for actually looking up coverage information
from the logic that displays it. These were tangled rather thoroughly
so this change is a bit large, but it mostly consists of moving things
around. The coverage lookup logic itself now lives in the library,
rather than being spread between the library and the tool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218184 91177308-0d34-0410-b5e6-96231b3b80d8
It isn't always useful to skip blank lines, as evidenced by the
somewhat awkward use of line_iterator in llvm-cov. This adds a knob to
control whether or not to skip blanks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217960 91177308-0d34-0410-b5e6-96231b3b80d8
A single function in SourceCoverageDataManager was the only user of
some of the comparisons in CounterMappingRegion, and at this point we
know that only one file is relevant. This lets us use slightly simpler
logic directly in the client.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217745 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch moves the profile reading logic out of the Sample Profile
transformation into a generic profile reader facility in
lib/ProfileData.
The intent is to use this new reader to implement a sample profile
reader/writer that can be used to convert sample profiles from external
sources into LLVM.
This first patch introduces no functional changes. It moves the profile
reading code from lib/Transforms/SampleProfile.cpp into
lib/ProfileData/SampleProfReader.cpp.
In subsequent patches I will:
- Add a bitcode format for sample profiles to allow for more efficient
encoding of the profile.
- Add a writer for both text and bitcode format profiles.
- Add a 'convert' command to llvm-profdata to be able to convert between
the two (and serve as entry point for other sample profile formats).
Reviewers: bogner, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5250
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217437 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-cov had a SourceRange type that was nearly identical to a
CountedRegion except that it shaved off a couple of fields. There
aren't likely to be enough of these for the minor memory savings to be
worth the extra complexity here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217417 91177308-0d34-0410-b5e6-96231b3b80d8
This name was too similar to CoverageMappingRegion, and the type
really belongs in the coverage library anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217416 91177308-0d34-0410-b5e6-96231b3b80d8
The profile data format was recently updated and the new indexing api
requires the code coverage tool to know the function's hash as well
as the function's name to get the execution counts for a function.
Differential Revision: http://reviews.llvm.org/D4994
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216207 91177308-0d34-0410-b5e6-96231b3b80d8
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216002 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
This updates the instrumentation based profiling format so that when
we have multiple functions with the same name (but different function
hashes) we keep all of them instead of rejecting the later ones.
There are a number of scenarios where this can come up where it's more
useful to keep multiple function profiles:
* Name collisions in unrelated libraries that are profiled together.
* Multiple "main" functions from multiple tools built against a common
library.
* Combining profiles from different build configurations (ie, asserts
and no-asserts)
The profile format now stores the number of counters between the hash
and the counts themselves, so that multiple sets of counts can be
stored. Since this is backwards incompatible, I've bumped the format
version and added some trivial logic to skip this when reading the old
format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214585 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the empty coverage mapping regions.
Those regions were produced by clang's old mapping region generation
algorithm, but the new algorithm doesn't generate them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213981 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the data structures, the reader and
the writers for the new code coverage mapping system.
The new code coverage mapping system uses the instrumentation
based profiling to provide code coverage analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213910 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
The idea of this patch is to turn llvm/Support/system_error.h into a
transitional header that just brings in the erorr_code api to the llvm
namespace. I will remove it shortly afterwards.
The cases where the general idea needed some tweaking:
* std::errc is a namespace in msvc, so we cannot use "using std::errc". I could
add an #ifdef, but there were not that many uses, so I just added std:: to
them in this patch.
* Template specialization had to be moved to the std namespace in this
patch set already.
* The msvc implementation of default_error_condition doesn't seem to
provide the same transformations as we need. Not too surprising since
the standard doesn't actually say what "equivalent" means. I fixed the
problem by keeping our old mapping and using it at error_code
construction time.
Despite these shortcomings I think this is still a good thing. Some reasons:
* The different implementations of system_error might improve over time.
* It removes 925 lines of code from llvm already.
* It removes 6313 bytes from the text segment of the clang binary when
it is built with gcc and 2816 bytes when building with clang and
libstdc++.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210687 91177308-0d34-0410-b5e6-96231b3b80d8
Allow multiple raw profiles to coexist in a single .profraw file,
given the following conditions:
- Zero padding at the end of or between profiles will be skipped.
- Each profile must start with a valid header.
- Mixing endianness or pointer sizes in concatenated profiles files is
not allowed.
This is needed to handle cases where a program's shared libraries are
profiled as well as the main executable itself, as we'll need to emit
each executable's counters. Combining the tables in the runtime would
be expensive for the instrumented program.
rdar://16918688
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208938 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for an indexed instrumentation based profiling
format, which is just a small header and an on disk hash table. This
format will be used by clang's -fprofile-instr-use= for PGO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206656 91177308-0d34-0410-b5e6-96231b3b80d8
Since the profile can come from 32-bit machines, we need to check the
pointer size. Change the magic number to facilitate this.
Adds tests for reading 32-bit and 64-bit binaries (both big- and
little-endian). The tests write a binary using printf in RUN lines
(like raw-magic-but-no-header.test). Assuming the bots don't complain,
this seems like a better way forward for testing RawInstrProfReader than
committing binary files.
<rdar://problem/16400648>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204557 91177308-0d34-0410-b5e6-96231b3b80d8
Read a raw binary profile that corresponds to a memory dump from the
runtime profile.
The test is a binary file generated from
cfe/trunk/test/Profile/c-general.c with the new compiler-rt runtime and
the matching text version of the input. It includes instructions on how
to regenerate.
<rdar://problem/15950346>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204496 91177308-0d34-0410-b5e6-96231b3b80d8
This isn't a format we'll want to write out in practice, but moving it
to the writer library simplifies llvm-profdata and isolates it from
further changes to the format.
This also allows us to update the tests to not rely on the text output
format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204489 91177308-0d34-0410-b5e6-96231b3b80d8