For now this is distinct from isCodeGenOnly, as code-gen-only
instructions can (and often do) still have encoding information
associated with them. Once we've migrated all of them over to true
pseudo-instructions that are lowered to real instructions prior to
the printer/emitter, we can remove isCodeGenOnly and just use isPseudo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134539 91177308-0d34-0410-b5e6-96231b3b80d8
Pseudo-instructions don't have encoding information, as they're lowered
to real instructions by the time we're doing binary encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134533 91177308-0d34-0410-b5e6-96231b3b80d8
The promotion code lost any alignment information, when hoisting loads and
stores out of the loop. This lead to incorrect aligned memory accesses. We now
use the largest alignment we can prove to be correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134520 91177308-0d34-0410-b5e6-96231b3b80d8
This is impossible in theory, I can prove it. In practice, our near-zero
threshold can cause the network to oscillate between equally good
solutions.
<rdar://problem/9720596>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134428 91177308-0d34-0410-b5e6-96231b3b80d8
If the function allocates reserved stack space for callee argument frames,
estimateStackSize() needs to account for that, as it doesn't show up as
ordinary frame objects. Otherwise, a callee with a large argument list will
throw off the calculations for whether to allocate an emergency spill slot
and we get assert() failures in the register scavenger.
rdar://9715469
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134415 91177308-0d34-0410-b5e6-96231b3b80d8
Remat during spilling triggers dead code elimination. If a phi-def
becomes unused, that may also cause live ranges to split into separate
connected components.
This type of splitting is different from normal live range splitting. In
particular, there may not be a common original interval.
When the split range is its own original, make sure that the new
siblings are also their own originals. The range being split cannot be
used as an original since it doesn't cover the new siblings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134413 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the assert that triggers if SuccIterator is constructed for a basic block
without a terminator instruction. Instead of triggering an assert a succ_end()
iterator is returned. This models a basic block with zero successors and allows
us to use F->viewCFG() on incompletely constructed functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134398 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the issue noted in PR10251 where early tail dup of bbs with
indirectbr would cause a bb to be duplicated into a loop preheader
and then into its predecessors, creating phi nodes with identical
operands just before register allocation.
This helps with jsinterp.o size (__TEXT goes from 163568 to 126656)
and a bit with performance 1.005x faster on sunspider (jits still enabled).
The result on webkit with the jit disabled is more significant: 1.021x faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134372 91177308-0d34-0410-b5e6-96231b3b80d8
A split point inserted in a block with a landing pad successor may be
hoisted above the call to ensure that it dominates all successors. The
code that handles the rest of the basic block must take this into
account.
I am not including a test case, it would be very fragile. PR10244 comes
from building clang with exceptions enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134369 91177308-0d34-0410-b5e6-96231b3b80d8
makes one of the tests actually mean something (as the string 'add' will
always appear in the output of this file).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134358 91177308-0d34-0410-b5e6-96231b3b80d8