These were the last missing forwarding functions. Also consistently use
the forwarding functions instead of using MachOObj directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178992 91177308-0d34-0410-b5e6-96231b3b80d8
LoadCommandInfo was needed to keep a command and its offset in the file. Now
that we always have a pointer to the command, we don't need the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178991 91177308-0d34-0410-b5e6-96231b3b80d8
The fix for PR14972 in r177055 introduced a real think-o in the *store*
side, likely because I was much more focused on the load side. While we
can arbitrarily widen (or narrow) a loaded value, we can't arbitrarily
widen a value to be stored, as that changes the width of memory access!
Lock down the code path in the store rewriting which would do this to
only handle the intended circumstance.
All of the existing tests continue to pass, and I've added a test from
the PR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178974 91177308-0d34-0410-b5e6-96231b3b80d8
a relocation across sections. Do this for DW_AT_stmt list in the
skeleton CU and check the relocations in the debug_info section.
Add a FIXME for multiple CUs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178969 91177308-0d34-0410-b5e6-96231b3b80d8
Integer return values are sign or zero extended by the callee, and
structs up to 32 bytes in size can be returned in registers.
The CC_Sparc64 CallingConv definition is shared between
LowerFormalArguments_64 and LowerReturn_64. Function arguments and
return values are passed in the same registers.
The inreg flag is also used for return values. This is required to handle
C functions returning structs containing floats and ints:
struct ifp {
int i;
float f;
};
struct ifp f(void);
LLVM IR:
define inreg { i32, float } @f() {
...
ret { i32, float } %retval
}
The ABI requires that %retval.i is returned in the high bits of %i0
while %retval.f goes in %f1.
Without the inreg return value attribute, %retval.i would go in %i0 and
%retval.f would go in %f3 which is a more efficient way of returning
%multiple values, but it is not ABI compliant for returning C structs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178966 91177308-0d34-0410-b5e6-96231b3b80d8
64-bit SPARC v9 processes use biased stack and frame pointers, so the
current function's stack frame is located at %sp+BIAS .. %fp+BIAS where
BIAS = 2047.
This makes more local variables directly accessible via [%fp+simm13]
addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178965 91177308-0d34-0410-b5e6-96231b3b80d8
There are certain PPC instructions into which we can fold a zero immediate
operand. We can detect such cases by looking at the register class required
by the using operand (so long as it is not otherwise constrained).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178961 91177308-0d34-0410-b5e6-96231b3b80d8
This comment documents the current behavior of the ARM implementation of this
callback, and also the soon-to-be-committed PPC version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178959 91177308-0d34-0410-b5e6-96231b3b80d8
All arguments are formally assigned to stack positions and then promoted
to floating point and integer registers. Since there are more floating
point registers than integer registers, this can cause situations where
floating point arguments are assigned to registers after integer
arguments that where assigned to the stack.
Use the inreg flag to indicate 32-bit fragments of structs containing
both float and int members.
The three-way shadowing between stack, integer, and floating point
registers requires custom argument lowering. The good news is that
return values are passed in the exact same way, and we can share the
code.
Still missing:
- Update LowerReturn to handle structs returned in registers.
- LowerCall.
- Variadic functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178958 91177308-0d34-0410-b5e6-96231b3b80d8
We used to do "SmallString += CUID", which is incorrect, since CUID will
be truncated to a char.
rdar://problem/13573833
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178941 91177308-0d34-0410-b5e6-96231b3b80d8
The code emitter knows how to encode operands whose name matches one of
the encoding fields. If there is no match, the code emitter relies on
the order of the operand and field definitions to determine how operands
should be encoding. Matching by order makes it easy to accidentally break
the instruction encodings, so we prefer to match by name.
Reviewed-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178930 91177308-0d34-0410-b5e6-96231b3b80d8
SITargetLowering::analyzeImmediate() was converting the 64-bit values
to 32-bit and then checking if they were an inline immediate. Some
of these conversions caused this check to succeed and produced
S_MOV instructions with 64-bit immediates, which are illegal.
v2:
- Clean up logic
Reviewed-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178927 91177308-0d34-0410-b5e6-96231b3b80d8
On cores for which we know the misprediction penalty, and we have
the isel instruction, we can profitably perform early if conversion.
This enables us to replace some small branch sequences with selects
and avoid the potential stalls from mispredicting the branches.
Enabling this feature required implementing canInsertSelect and
insertSelect in PPCInstrInfo; isel code in PPCISelLowering was
refactored to use these functions as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178926 91177308-0d34-0410-b5e6-96231b3b80d8
The manual states that there is a minimum of 13 cycles from when the
mispredicted branch is issued to when the correct branch target is
issued.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178925 91177308-0d34-0410-b5e6-96231b3b80d8
This is the counterpart to commit r160637, except it performs the action
in the bottomup portion of the data flow analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178922 91177308-0d34-0410-b5e6-96231b3b80d8
The normal dataflow sequence in the ARC optimizer consists of the following
states:
Retain -> CanRelease -> Use -> Release
The optimizer before this patch stored the uses that determine the lifetime of
the retainable object pointer when it bottom up hits a retain or when top down
it hits a release. This is correct for an imprecise lifetime scenario since what
we are trying to do is remove retains/releases while making sure that no
``CanRelease'' (which is usually a call) deallocates the given pointer before we
get to the ``Use'' (since that would cause a segfault).
If we are considering the precise lifetime scenario though, this is not
correct. In such a situation, we *DO* care about the previous sequence, but
additionally, we wish to track the uses resulting from the following incomplete
sequences:
Retain -> CanRelease -> Release (TopDown)
Retain <- Use <- Release (BottomUp)
*NOTE* This patch looks large but the most of it consists of updating
test cases. Additionally this fix exposed an additional bug. I removed
the test case that expressed said bug and will recommit it with the fix
in a little bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178921 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PEI as previously described, but correctly handles the case where
the instruction defining the virtual register to be scavenged is the first in
the block. Arnold provided me with a bugpoint-reduced test case, but even that
seems too large to use as a regression test. If I'm successful in cleaning it
up then I'll commit that as well.
Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178919 91177308-0d34-0410-b5e6-96231b3b80d8