Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127498 91177308-0d34-0410-b5e6-96231b3b80d8
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127459 91177308-0d34-0410-b5e6-96231b3b80d8
The basic issue is that isel (very reasonably!) expects conditional branches
to be folded, so CGP leaving around a bunch dead computation feeding
conditional branches isn't such a good idea. Just fold branches on constants
into unconditional branches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123526 91177308-0d34-0410-b5e6-96231b3b80d8
have objectsize folding recursively simplify away their result when it
folds. It is important to catch this here, because otherwise we won't
eliminate the cross-block values at isel and other times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123524 91177308-0d34-0410-b5e6-96231b3b80d8
which have trapping constant exprs in them due to PHI nodes.
Eliminating them can cause the constant expr to be evalutated
on new paths if the input edges are critical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122164 91177308-0d34-0410-b5e6-96231b3b80d8