CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234601 91177308-0d34-0410-b5e6-96231b3b80d8
Cache NumEntries locally, it's only used in an assert and using the member
variable prevents the compiler from eliminating the tombstone check for types
with trivial destructors. No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234589 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.
Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll
Reviewers: resistor, hfinkel, eliben, meheff, jholewinski
Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234567 91177308-0d34-0410-b5e6-96231b3b80d8
The IPToState table must be emitted after we have generated labels for
all functions in the table. Don't rely on the order of the list of
globals. Instead, utilize WinEHFuncInfo to tell us how many catch
handlers we expect to outline. Once we know we've visited all the catch
handlers, emit the cppxdata.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234566 91177308-0d34-0410-b5e6-96231b3b80d8
formatted_raw_ostream is a wrapper over another stream to add column and line
number tracking.
It is used only for asm printing.
This patch moves the its creation down to where we know we are printing
assembly. This has the following advantages:
* Simpler lifetime management: std::unique_ptr
* We don't compute column and line number of object files :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234535 91177308-0d34-0410-b5e6-96231b3b80d8
Revert "Add classof implementations to the raw_ostream classes."
Revert "Use the cast machinery to remove dummy uses of formatted_raw_ostream."
The underlying issue can be fixed without classof.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234495 91177308-0d34-0410-b5e6-96231b3b80d8
If we know we are producing an object, we don't need to wrap the stream
in a formatted_raw_ostream anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234461 91177308-0d34-0410-b5e6-96231b3b80d8
(Re-apply r234361 with a fix and a testcase for PR23157)
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234424 91177308-0d34-0410-b5e6-96231b3b80d8
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234361 91177308-0d34-0410-b5e6-96231b3b80d8
The current crash reporting on Mac OS is only disabled via an environment variable.
This adds a boolean (default false) which can also disable crash reporting.
The only client right now is the unittests which don't ever want crash reporting, but do want to detect killed programs.
Reduces the time to run the APFloat unittests on my machine from
[----------] 47 tests from APFloatTest (51250 ms total)
to
[----------] 47 tests from APFloatTest (765 ms total)
Reviewed by Reid Kleckner and Justin Bogner
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234353 91177308-0d34-0410-b5e6-96231b3b80d8
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234290 91177308-0d34-0410-b5e6-96231b3b80d8
Change `DIBuilder` to mutate `MDCompositeTypeBase` directly, and remove
the wrapping API in `DICompositeType`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234289 91177308-0d34-0410-b5e6-96231b3b80d8
Remove special iterators from `DIExpression` in favour of same in
`MDExpression`. There should be no functionality change here.
Note that the APIs are slightly different: `getArg(unsigned)` counts
from 0, not 1, in the `MDExpression` version of the iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234285 91177308-0d34-0410-b5e6-96231b3b80d8
Move body of `DISubprogram::isPrivate()` (etc.) to `MDSubprogram`, and
change the versions in `DISubprogram` to forward there.
This is just like r234275, but for subprograms instead of types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234282 91177308-0d34-0410-b5e6-96231b3b80d8
Move body of `DIType::isObjectPointer()` (etc.) to `MDType`, and change
the versions in `DIType` to forward there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234275 91177308-0d34-0410-b5e6-96231b3b80d8
During initial review, the `lo:` field was renamed to `lowerBound:`.
Make the same change to the C++ API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234267 91177308-0d34-0410-b5e6-96231b3b80d8
Delete `DIDescriptor::is*()` and the various constructors from `MDNode*`
in `DIDescriptor` subclasses.
If this just broke your out-of-tree code, you need to make updates along
the lines of r234255, r234256, r234257 and r234258:
- Generally, `DIX().isX()` => `isa<MDX>()`. So, `D.isCompileUnit()`
should just be `isa<MDCompileUnit>(D)`, modulo checks for null.
- Exception: `DILexicalBlock` => `MDLexicalBlockBase`.
- Exception: `DIDerivedType` => `MDDerivedTypeBase`.
- Exception: `DICompositeType` => `MDCompositeTypeBase`.
- Exception: `DIVariable` => `MDLocalVariable`.
- Note that (e.g.) `DICompileUnit` has an implicit constructor from
`MDCompileUnit*`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234263 91177308-0d34-0410-b5e6-96231b3b80d8
`DIDescriptor`'s subclasses allow construction from incompatible
pointers, and `DIDescriptor` defines a series of `isa<>`-like functions
(e.g., `isCompileUnit()` instead of `isa<MDCompileUnit>()`) that clients
tend to use like this:
if (DICompileUnit(N).isCompileUnit())
foo(DICompileUnit(N));
These construction patterns work together to make `DIDescriptor` behave
differently from normal pointers.
Instead, use built-in `isa<>`, `dyn_cast<>`, etc., and only build
`DIDescriptor`s from pointers that are valid for their type.
I've split this into a few commits for different parts of LLVM and clang
(to decrease the patch size and increase the chance of review).
Generally the changes I made were NFC, but in a few places I made things
stricter if it made sense from the surrounded code.
Eventually a follow-up commit will remove the API for the "old" way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234255 91177308-0d34-0410-b5e6-96231b3b80d8
Allow LLVM-style casting on `DIDescriptor` and its subclasses so they
can behave more like raw pointers. I haven't bothered with tests since
I have a follow-up commit coming shortly that uses them extensively in
tree, and I'm hoping to kill `DIDescriptor` entirely before too long (so
they won't have time to bitrot).
Usage examples:
DIDescriptor D = foo();
if (DICompileUnit CU = dyn_cast<MDCompileUnit>(D))
return bar(CU);
else if (auto *SP = dyn_cast<MDSubprogram>(D))
return baz(SP);
return other(D);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234250 91177308-0d34-0410-b5e6-96231b3b80d8
Gut `DIRef<>::resolve()`, reimplementing it using
`TypedDebugNodeRef<>::resolve()`. Use three separate functions rather
than some sort of type traits, since the latter (i.e., mapping `DIScope`
=> `MDScope`) seems heavy-handed. I don't expect `DIRef<>` to last much
longer in tree anyway.
As a drive-by fix, make `TypedDebugNodeRef<>::resolve()` do the right
thing with `nullptr`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234248 91177308-0d34-0410-b5e6-96231b3b80d8