SCEVUnknowns with identical Instructions to be equal. This allows
it to analze cases such as the attached testcase, where the front-end
has cloned the loop controlling expression. Along with r73805, this
lets IndVarSimplify eliminate all the sign-extend casts in the
loop in the attached testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73807 91177308-0d34-0410-b5e6-96231b3b80d8
expression in IVUsers, because in the case of a use of a non-linear
addrec outside of a loop, this causes the addrec to be evaluated as
a linear addrec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73774 91177308-0d34-0410-b5e6-96231b3b80d8
as if they were multiple uses of the same instruction. This interacts
well with the existing loadpre that j-t does to open up many new jump
threads earlier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73768 91177308-0d34-0410-b5e6-96231b3b80d8
casted induction variables in cases where the cast
isn't foldable. It ended up being a pessimization in
many cases. This could be fixed, but it would require
a bunch of complicated code in IVUsers' clients. The
advantages of this approach aren't visible enough to
justify it at this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73706 91177308-0d34-0410-b5e6-96231b3b80d8
move loads back past a check that the load address
is valid, see new testcase. The test that went
in with 72661 has exactly this case, except that
the conditional it's moving past is checking
something else; I've settled for changing that
test to reference a global, not a pointer. It
may be possible to scan all the tests you pass and
make sure none of them are checking any component
of the address, but it's not trivial and I'm not
trying to do that here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73632 91177308-0d34-0410-b5e6-96231b3b80d8
obscuring what would otherwise be a low-bits mask. Use ComputeMaskedBits
to compute what ShrinkDemandedConstant knew about to reconstruct a
low-bits mask value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73540 91177308-0d34-0410-b5e6-96231b3b80d8
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73431 91177308-0d34-0410-b5e6-96231b3b80d8
problem addressed in 31284, but the patch there only
addressed the case where an invoke is the first thing in
a block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73416 91177308-0d34-0410-b5e6-96231b3b80d8
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73361 91177308-0d34-0410-b5e6-96231b3b80d8
induction variable when the addrec to be expanded does not require
a wider type. This eliminates the need for IndVarSimplify to
micro-manage SCEV expansions, because SCEVExpander now
automatically expands them in the form that IndVarSimplify considers
to be canonical. (LSR still micro-manages its SCEV expansions,
because it's optimizing for the target, rather than for
other optimizations.)
Also, this uses the new getAnyExtendExpr, which has more clever
expression simplification logic than the IndVarSimplify code it
replaces, and this cleans up some ugly expansions in code such as
the included masked-iv.ll testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73294 91177308-0d34-0410-b5e6-96231b3b80d8
either one call the other since either one can be replaced at link time, and
they need to be independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73225 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
RewriteStoreUserOfWholeAlloca deal with tail padding because
isSafeUseOfBitCastedAllocation expects them to. Otherwise, we crash
trying to erase the bitcast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72688 91177308-0d34-0410-b5e6-96231b3b80d8
rewrite the comparison if there is any implicit extension or truncation
on the induction variable. I'm planning for IVUsers to eventually take
over some of the work of this code, and for it to be generalized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72496 91177308-0d34-0410-b5e6-96231b3b80d8
possible. For example, it now emits
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 2, i64 %tmp, i64 1
instead of the equivalent but less obvious
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 0, i64 %tmp, i64 19
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72452 91177308-0d34-0410-b5e6-96231b3b80d8
division operation, don't attempt to use the operation's value as
the base of a getelementptr. This fixes PR4271.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72422 91177308-0d34-0410-b5e6-96231b3b80d8
low-level alias() method, allowing it to reason more aggressively
about pointers into constant memory. PR4189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72403 91177308-0d34-0410-b5e6-96231b3b80d8
leave the original comparison in place if it has other uses, since the
other uses won't be dominated by the new comparison instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72369 91177308-0d34-0410-b5e6-96231b3b80d8
sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.
Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.
As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72366 91177308-0d34-0410-b5e6-96231b3b80d8
Fix by clearing the rewriter cache before deleting the trivially dead
instructions.
Also make InsertedExpressions use an AssertingVH to catch these
bugs easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72364 91177308-0d34-0410-b5e6-96231b3b80d8
assuming that the use of the value is in a block dominated by the
"normal" destination. LangRef.html and other documentation sources
don't explicitly guarantee this, but it seems to be assumed in
other places in LLVM at least.
This fixes an assertion failure on the included testcase, which
is derived from the Ada testsuite.
FixUsesBeforeDefs is a temporary measure which I'm looking to
replace with a more capable solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72266 91177308-0d34-0410-b5e6-96231b3b80d8
use in expanding SCEVAddExprs with GEPs. The operands of a
SCEVMulExpr need to be multiplied together, not added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72250 91177308-0d34-0410-b5e6-96231b3b80d8
Instcombine to be more aggressive about using SimplifyDemandedBits
on shift nodes. This allows a shift to be simplified to zero in the
included test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72204 91177308-0d34-0410-b5e6-96231b3b80d8
of the comparison is defined inside the loop. This fixes a
use-before-def problem, because the transformation puts a use
of the RHS outside the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72149 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72093 91177308-0d34-0410-b5e6-96231b3b80d8
is not known to be nothrow. This allows readnone/readonly functions
to be deleted even if we don't know whether the callee can throw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71676 91177308-0d34-0410-b5e6-96231b3b80d8
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71535 91177308-0d34-0410-b5e6-96231b3b80d8
These values aren't analyzable, so they don't care if more information
about the loop trip count can be had. Also, SCEVUnknown is used for
a PHI while the PHI itself is being analyzed, so it needs to be left
in the Scalars map. This fixes a variety of subtle issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71533 91177308-0d34-0410-b5e6-96231b3b80d8
method, fixing a crash on PR4146. While the store will
ultimately overwrite the "padded size" number of bits in memory,
the stored value may be a subset of this size. This function
only wants to handle the case where all bits are stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71224 91177308-0d34-0410-b5e6-96231b3b80d8
bits captured, but the pointer marked nocapture. In fact
I now recall that this problem is why only readnone functions
returning void were considered before! However keep a small
fix that was also in r70876: a readnone function returning
void can result in bits being captured if it unwinds, so
test for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71168 91177308-0d34-0410-b5e6-96231b3b80d8
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71165 91177308-0d34-0410-b5e6-96231b3b80d8
array and the add is within range. This helps simplify expressions
expanded by ScalarEvolutionExpander.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71158 91177308-0d34-0410-b5e6-96231b3b80d8
the readnone. Since MallocInst is scheduled for deletion
it doesn't seem worth doing anything more subtle, such as
having mayWriteToMemory return true for MallocInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71077 91177308-0d34-0410-b5e6-96231b3b80d8
the optimizers about this. For example, a readonly
function with no uses cannot be removed unless it is
also marked nounwind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71071 91177308-0d34-0410-b5e6-96231b3b80d8
of returning a list of pointers to Values that are deleted. This was
unsafe, because the pointers in the list are, by nature of what
RecursivelyDeleteDeadInstructions does, always dangling. Replace this
with a simple callback mechanism. This may eventually be removed if
all clients can reasonably be expected to use CallbackVH.
Use this to factor out the dead-phi-cycle-elimination code from LSR
utility function, and generalize it to use the
RecursivelyDeleteTriviallyDeadInstructions utility function.
This makes LSR more aggressive about eliminating dead PHI cycles;
adjust tests to either be less trivial or to simply expect fewer
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70636 91177308-0d34-0410-b5e6-96231b3b80d8
information to simplify [sz]ext({a,+,b}) to {zext(a),+,[zs]ext(b)},
as appropriate.
These functions and the trip count code each call into the other, so
this requires careful handling to avoid infinite recursion. During
the initial trip count computation, conservative SCEVs are used,
which are subsequently discarded once the trip count is actually
known.
Among other benefits, this change lets LSR automatically eliminate
some unnecessary zext-inreg and sext-inreg operation where the
operand is an induction variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70241 91177308-0d34-0410-b5e6-96231b3b80d8
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69892 91177308-0d34-0410-b5e6-96231b3b80d8
instructions in order to avoid inserting new ones. However, if
the cast instruction is the SCEVExpander's InsertPt, this
causes subsequently emitted instructions to be inserted near
the cast, and not at the location of the original insert point.
Fix this by adjusting the insert point in such cases.
This fixes PR4009.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69808 91177308-0d34-0410-b5e6-96231b3b80d8
sext around sext(shorter IV + constant), using a
longer IV instead, when it can figure out the
add can't overflow. This comes up a lot in
subscripting; mainly affects 64 bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69123 91177308-0d34-0410-b5e6-96231b3b80d8
llvm.dbg.region.end instrinsic. This nested llvm.dbg.func.start/llvm.dbg.region.end pair now enables DW_TAG_inlined_subroutine support in code generator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69118 91177308-0d34-0410-b5e6-96231b3b80d8
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68940 91177308-0d34-0410-b5e6-96231b3b80d8
integer types, unless they are already strange. This prevents it from
turning the code produced by SROA into crazy libcalls and stuff that
the code generator can't handle. In the attached example, the result
was an i96 multiply that caused the x86 backend to assert.
Note that if TargetData had an idea of what the legal types are for
a target that this could be used to stop instcombine from introducing
i64 muls, as Scott wanted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68598 91177308-0d34-0410-b5e6-96231b3b80d8
instead of the place where it started to perform the string copy.
- PR3661
- Patch by Benjamin Kramer!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68443 91177308-0d34-0410-b5e6-96231b3b80d8