Remaining "uncategorized" functions have been organized into their
proper place in the hierarchy. Some functions were moved around so
groups are defined together.
No code changes were made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153169 91177308-0d34-0410-b5e6-96231b3b80d8
This gives a lot of love to the docs for the C API. Like Clang's
documentation, the C API is now organized into a Doxygen "module"
(LLVMC). Each C header file is a child of the main module. Some modules
(like Core) have a hierarchy of there own. The produced documentation is
thus better organized (before everything was in one monolithic list).
This patch also includes a lot of new documentation for APIs in Core.h.
It doesn't document them all, but is better than none. Function docs are
missing @param and @return annotation, but the documentation body now
commonly provides help details (like the expected llvm::Value sub-type
to expect).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153157 91177308-0d34-0410-b5e6-96231b3b80d8
ImmutAVLTree uses random unsigned values as keys into a DenseMap,
which could possibly happen to be the same value as the Tombstone or
Entry keys in the DenseMap.
Test case is hard to come up with. We randomly get failures on the
internal static analyzer bot, which most likely hits this issue
(hard to be 100% sure without the full stack).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153148 91177308-0d34-0410-b5e6-96231b3b80d8
violations I introduced. Also sort some of the instructions to get
a more consistent ordering.
Suggestions on still better / more consistent formatting would be
welcome. I'm actually tempted to use a macro to define all of the
delegate methods...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153030 91177308-0d34-0410-b5e6-96231b3b80d8
directly query the function information which this set was representing.
This simplifies the interface of the inline cost analysis, and makes the
always-inline pass significantly more efficient.
Previously, always-inline would first make a single set of every
function in the module *except* those marked with the always-inline
attribute. It would then query this set at every call site to see if the
function was a member of the set, and if so, refuse to inline it. This
is quite wasteful. Instead, simply check the function attribute directly
when looking at the callsite.
The normal inliner also had similar redundancy. It added every function
in the module with the noinline attribute to its set to ignore, even
though inside the cost analysis function we *already tested* the
noinline attribute and produced the same result.
The only tricky part of removing this is that we have to be able to
correctly remove only the functions inlined by the always-inline pass
when finalizing, which requires a bit of a hack. Still, much less of
a hack than the set of all non-always-inline functions was. While I was
touching this function, I switched a heavy-weight set to a vector with
sort+unique. The algorithm already had a two-phase insert and removal
pattern, we were just needlessly paying the uniquing cost on every
insert.
This probably speeds up some compiles by a small amount (-O0 compiles
with lots of always-inline, so potentially heavy libc++ users), but I've
not tried to measure it.
I believe there is no functional change here, but yell if you spot one.
None are intended.
Finally, the direction this is going in is to greatly simplify the
inline cost query interface so that we can replace its implementation
with a much more clever one. Along the way, all the APIs get simplified,
so it seems incrementally good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152903 91177308-0d34-0410-b5e6-96231b3b80d8
analysis implementation. The header was already separated. Also cleanup
all the comments in the header to follow a nice modern doxygen form.
There is still plenty of cruft here, but some of that will fall out in
subsequent refactorings and this was an easy step in the right
direction. No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152898 91177308-0d34-0410-b5e6-96231b3b80d8
Only record IVUsers that are dominated by simplified loop
headers. Otherwise SCEVExpander will crash while looking for a
preheader.
I previously tried to work around this in LSR itself, but that was
insufficient. This way, LSR can continue to run if some uses are not
in simple loops, as long as we don't attempt to analyze those users.
Fixes <rdar://problem/11049788> Segmentation fault: 11 in LoopStrengthReduce
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152892 91177308-0d34-0410-b5e6-96231b3b80d8
It caused MSP430DAGToDAGISel::SelectIndexedBinOp() to be miscompiled.
When two ReplaceUses()'s are expanded as inline, vtable in base class is stored to latter (ISelUpdater)ISU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152877 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot limit the concatenated instruction names to 64K. ARM is
already at 32K, and it is easy to imagine a target with more
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152817 91177308-0d34-0410-b5e6-96231b3b80d8
changed since. No one was using it. It is yet another consumer of the
InlineCost interface that I'd like to change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152769 91177308-0d34-0410-b5e6-96231b3b80d8
correlated pairs of pointer arguments at the callsite. This is designed
to recognize the common C++ idiom of begin/end pointer pairs when the
end pointer is a constant offset from the begin pointer. With the
C-based idiom of a pointer and size, the inline cost saw the constant
size calculation, and this provides the same level of information for
begin/end pairs.
In order to propagate this information we have to search for candidate
operations on a pair of pointer function arguments (or derived from
them) which would be simplified if the pointers had a known constant
offset. Then the callsite analysis looks for such pointer pairs in the
argument list, and applies the appropriate bonus.
This helps LLVM detect that half of bounds-checked STL algorithms
(such as hash_combine_range, and some hybrid sort implementations)
disappear when inlined with a constant size input. However, it's not
a complete fix due the inaccuracy of our cost metric for constants in
general. I'm looking into that next.
Benchmarks showed no significant code size change, and very minor
performance changes. However, specific code such as hashing is showing
significantly cleaner inlining decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152752 91177308-0d34-0410-b5e6-96231b3b80d8
Commit r152704 exposed a latent MSVC limitation (aka bug).
Both ilist and and iplist contains the same function:
template<class InIt> void insert(iterator where, InIt first, InIt last) {
for (; first != last; ++first) insert(where, *first);
}
Also ilist inherits from iplist and ilist contains a "using iplist<NodeTy>::insert".
MSVC doesn't know which one to pick and complain with an error.
I think it is safe to delete ilist::insert since it is redundant anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152746 91177308-0d34-0410-b5e6-96231b3b80d8
New flags: -misched-topdown, -misched-bottomup. They can be used with
the default scheduler or with -misched=shuffle. Without either
topdown/bottomup flag -misched=shuffle now alternates scheduling
direction.
LiveIntervals update is unimplemented with bottom-up scheduling, so
only -misched-topdown currently works.
Capped the ScheduleDAG hierarchy with a concrete ScheduleDAGMI class.
ScheduleDAGMI is aware of the top and bottom of the unscheduled zone
within the current region. Scheduling policy can be plugged into
the ScheduleDAGMI driver by implementing MachineSchedStrategy.
ConvergingScheduler is now the default scheduling algorithm.
It exercises the new driver but still does no reordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152700 91177308-0d34-0410-b5e6-96231b3b80d8
take a TargetLibraryInfo parameter. Internally, rather than passing TD, TLI
and DT parameters around all over the place, introduce a struct for holding
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152623 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the existing OProfile profiling code to reuse the same interfaces with the VTune profiling code.
In addition, unit tests for the profiling interfaces were added.
This patch was prepared by Andrew Kaylor and Daniel Malea, and reviewed in the llvm-commits list by Jim Grosbach
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152620 91177308-0d34-0410-b5e6-96231b3b80d8
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152532 91177308-0d34-0410-b5e6-96231b3b80d8
a common collection of methods on Value, and share their implementation.
We had two variations in two different places already, and I need the
third variation for inline cost estimation.
Reviewed by Duncan Sands on IRC, but further comments here welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152490 91177308-0d34-0410-b5e6-96231b3b80d8
* Add enums and structures for GNU version information.
* Implement extraction of that information on a per-symbol basis (ELFObjectFile::getSymbolVersion).
* Implement a generic interface, GetELFSymbolVersion(), for getting the symbol version from the ObjectFile (hides the templating).
* Have llvm-readobj print out the version, when available.
* Add a test for the new feature: readobj-elf-versioning.test
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152436 91177308-0d34-0410-b5e6-96231b3b80d8
caused several clients to select the slow variation. =[ This is extra
annoying because we don't have any realistic way of testing this -- by
design, these two functions *must* compute the same value.
Found while inspecting the output of some benchmarks I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152369 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
[ADT] Change the trivial FoldingSetNodeID::Add* methods to be inline, reapplied
with a fix for the longstanding over-read of 32-bit pointer values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152304 91177308-0d34-0410-b5e6-96231b3b80d8
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152297 91177308-0d34-0410-b5e6-96231b3b80d8