integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
ptrtoint and inttoptr in X86FastISel. These casts aren't always
handled in the generic FastISel code because X86 sometimes needs
custom code to do truncation and zero-extension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66988 91177308-0d34-0410-b5e6-96231b3b80d8
and use it in FastISelEmitter.cpp, and make FastISel
subtarget aware. Among other things, this lets it work
properly on x86 targets that don't have SSE, where it
successfully selects x87 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55156 91177308-0d34-0410-b5e6-96231b3b80d8
demonstrate the extent of its capabilities. Note that it
only attempts to operate on one of the blocks in this
testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55016 91177308-0d34-0410-b5e6-96231b3b80d8