* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163902 91177308-0d34-0410-b5e6-96231b3b80d8
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163790 91177308-0d34-0410-b5e6-96231b3b80d8
Most of the code guarded with ANDROIDEABI are not
ARM-specific, and having no relation with arm-eabi.
Thus, it will be more natural to call this
environment "Android" instead of "ANDROIDEABI".
Note: We are not using ANDROID because several projects
are using "-DANDROID" as the conditional compilation
flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163087 91177308-0d34-0410-b5e6-96231b3b80d8
Changes the hash result for strings containing characters
with values >= 128, such as UTF8 strings (not normal ASCII).
Changed mostly so we match other implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162882 91177308-0d34-0410-b5e6-96231b3b80d8
Adds the vendor 'fsl' (used by Freescale SDK) to Triple. This will allow
clang support for Freescale cross-compile configurations.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162726 91177308-0d34-0410-b5e6-96231b3b80d8
TinyPtrVector. With these, it is sufficiently functional for my more
normal / pedestrian uses.
I've not included some r-value reference stuff here because the value
type for a TinyPtrVector is, necessarily, just a pointer.
I've added tests that cover the basic behavior of these routines, but
they aren't as comprehensive as I'd like. In particular, they don't
really test the iterator semantics as thoroughly as they should. Maybe
some brave soul will feel enterprising and flesh them out. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161104 91177308-0d34-0410-b5e6-96231b3b80d8
for this class. These tests exercise most of the basic properties, but
the API for TinyPtrVector is very strange currently. My plan is to start
fleshing out the API to match that of SmallVector, but I wanted a test
for what is there first.
Sadly, it doesn't look reasonable to just re-use the SmallVector tests,
as this container can only ever store pointers, and much of the
SmallVector testing is to get construction and destruction right.
Just to get this basic test working, I had to add value_type to the
interface.
While here I found a subtle bug in the combination of 'erase', 'begin',
and 'end'. Both 'begin' and 'end' wanted to use a null pointer to
indicate the "end" iterator of an empty vector, regardless of whether
there is actually a vector allocated or the pointer union is null.
Everything else was fine with this except for erase. If you erase the
last element of a vector after it has held more than one element, we
return the end iterator of the underlying SmallVector which need not be
a null pointer. Instead, simply use the pointer, and poniter + size()
begin/end definitions in the tiny case, and delegate to the inner vector
whenever it is present.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161024 91177308-0d34-0410-b5e6-96231b3b80d8
test more than a single instantiation of SmallVector.
Add testing for 0, 1, 2, and 4 element sized "small" buffers. These
appear to be essentially untested in the unit tests until now.
Fix several tests to be robust in the face of a '0' small buffer. As
a consequence of this size buffer, the growth patterns are actually
observable in the test -- yes this means that many tests never caused
a grow to occur before. For some tests I've merely added a reserve call
to normalize behavior. For others, the growth is actually interesting,
and so I captured the fact that growth would occur and adjusted the
assertions to not assume how rapidly growth occured.
Also update the specialization for a '0' small buffer length to have all
the same interface points as the normal small vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161001 91177308-0d34-0410-b5e6-96231b3b80d8
The rationale here is that it's hard to write loops containing vector erases and
it only shows up if the vector contains non-trivial objects leading to crashes
when forming them out of garbage memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160854 91177308-0d34-0410-b5e6-96231b3b80d8
the comparison. This prevents large unsigned integers from being equal to
signed negative integers of the same bit width.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160642 91177308-0d34-0410-b5e6-96231b3b80d8
For a measure of safety, this conversion is only permitted if the
stored pointer type can also be created from a const void *.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160456 91177308-0d34-0410-b5e6-96231b3b80d8
These functions have obviously never been used before.
They should be identical to the idf_ext_iterator counterparts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160381 91177308-0d34-0410-b5e6-96231b3b80d8
Make it possible to prune individual graph edges from a post-order
traversal by specializing the po_iterator_storage template. Previously,
it was only possible to prune full graph nodes. Edge pruning makes it
possible to remove loop back-edges, for example.
Also replace the existing DFSetTraits customization hook with a
po_iterator_storage method for observing the post-order. DFSetTraits was
only used by LoopIterator.h which now provides a po_iterator_storage
specialization.
Thanks to Sean and Chandler for reviewing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160366 91177308-0d34-0410-b5e6-96231b3b80d8
some, and allows the routine to be inlined into common callers. The
various bits that hit this code in their hotpath seem slightly lower on
the profile, but I can't really measure a performance improvement as
everything seems to still be bottlenecked on likely cache misses. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159648 91177308-0d34-0410-b5e6-96231b3b80d8
There is a pretty staggering amount of this in LLVM's header files, this
is not all of the instances I'm afraid. These include all of the
functions that (in my build) are used by a non-static inline (or
external) function. Specifically, these issues were caught by the new
'-Winternal-linkage-in-inline' warning.
I'll try to just clean up the remainder of the clearly redundant "static
inline" cases on functions (not methods!) defined within headers if
I can do so in a reliable way.
There were even several cases of a missing 'inline' altogether, or my
personal favorite "static bool inline". Go figure. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158800 91177308-0d34-0410-b5e6-96231b3b80d8
Based on review discussion of r158638 with Chandler Carruth, Tobias von Koch, and Duncan Sands and a -Wmaybe-uninitialized warning from GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158685 91177308-0d34-0410-b5e6-96231b3b80d8
It always returns the iterator for the first inserted element, or the passed in
iterator if the inserted range was empty. Flesh out the unit test more and fix
all the cases it uncovered so far.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158645 91177308-0d34-0410-b5e6-96231b3b80d8