SwitchOpcodeMatcher) and have DAGISelMatcherOpt form it. This
speeds up selection, particularly for X86 which has lots of
variants of instructions with only type differences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97645 91177308-0d34-0410-b5e6-96231b3b80d8
'dsload' pattern. tblgen doesn't check patterns to see if they're
textually identical. This allows better factoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97630 91177308-0d34-0410-b5e6-96231b3b80d8
that they are not destination type specific. This allows
tblgen to factor them and the type check is redundant with
what the isel does anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97629 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate TargetInstrInfo::isIdentical and replace it with produceSameValue. In the default case, produceSameValue just checks whether two machine instructions are identical (except for virtual register defs). But targets may override it to check for unusual cases (e.g. ARM pic loads from constant pools).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97628 91177308-0d34-0410-b5e6-96231b3b80d8
long test(long x) { return (x & 123124) | 3; }
Currently compiles to:
_test:
orl $3, %edi
movq %rdi, %rax
andq $123127, %rax
ret
This is because instruction and DAG combiners canonicalize
(or (and x, C), D) -> (and (or, D), (C | D))
However, this is only profitable if (C & D) != 0. It gets in the way of the
3-addressification because the input bits are known to be zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97616 91177308-0d34-0410-b5e6-96231b3b80d8
now that isel handles chains more aggressively. This also
allows us to make isLegalToFold non-virtual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97597 91177308-0d34-0410-b5e6-96231b3b80d8
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97596 91177308-0d34-0410-b5e6-96231b3b80d8
the opc string passed in, since it's a given from the class inheritance of T2sI.
The fixed the extra 's' in adcss & sbcss when disassembly printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97582 91177308-0d34-0410-b5e6-96231b3b80d8
by loop depth and emit loop-invariant subexpressions outside of loops.
This speeds up MultiSource/Applications/viterbi and others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97580 91177308-0d34-0410-b5e6-96231b3b80d8
and nothing for AddressSpace, pass 0 for InsertBefore, "false" for ThreadLocal
and AddressSpace for AddressSpace. Spotted by gcc-4.5.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97563 91177308-0d34-0410-b5e6-96231b3b80d8
was that we weren't properly handling the case when interior
nodes of a matched pattern become dead after updating chain
and flag uses. Now we handle this explicitly in
UpdateChainsAndFlags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97561 91177308-0d34-0410-b5e6-96231b3b80d8