Delete subclasses of (the already defunct) `DIScope`, updating users to
use the raw pointers from the `Metadata` hierarchy directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235356 91177308-0d34-0410-b5e6-96231b3b80d8
Delete subclasses of (the already deleted) `DIType` in favour of
directly using pointers from the `Metadata` hierarchy.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235351 91177308-0d34-0410-b5e6-96231b3b80d8
The version of `constructTypeDIE()` for `MDSubroutineType` is unrelated
to (and has different callers than) the `MDCompositeType`. Split the
two in half.
This simplifies an upcoming patch to delete `DICompositeType`. There
shouldn't be any real functionality change here. `createTypeDIE()` is
`cast<>`'ing where it didn't need to before, but that function in turn
is only called for true `MDCompositeType`s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235349 91177308-0d34-0410-b5e6-96231b3b80d8
Update comment style in `DwarfUnit`.
- Drop duplicated comments at definition, and update the comments at
the declaration where the definition comments looked newer or more
complete.
- Drop the `functionName -` prefix.
- Add `\brief` in a few places.
- Remove a few comments entirely that weren't adding value (just
turned the function name and arguments into a sentence).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235345 91177308-0d34-0410-b5e6-96231b3b80d8
This is the last major parent class, so I'll probably start deleting
classes in batches now. Looks like many of the references to the DI*
hierarchy were updated organically along the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235331 91177308-0d34-0410-b5e6-96231b3b80d8
Replace uses of `DIScope` with `MDScope*`. There was one spot where
I've left an `MDScope*` uninitialized (where `DIScope` would have been
default-initialized to `nullptr`) -- this is intentional, since the
if/else that follows should unconditional assign it to a value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235327 91177308-0d34-0410-b5e6-96231b3b80d8
When an inline asm call has an output register marked as early-clobber, but
that same register is also an input operand, what should we do? GCC accepts
this, and is documented to accept this for read/write operands saying,
"Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it's used." For write-only operands, the
situation seems less clear, but I have at least one existing codebase that
assumes this will work, in part because it has syscall macros like this:
({ \
register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \
register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \
register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \
register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \
__asm__ __volatile__ \
("sc" \
: "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \
: "0"(r0), "1"(r3), "2"(r4), "3"(r5) \
: "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \
r3; \
})
Furthermore, with register aliases and subregister relationships that only the
backend knows about, rejecting this in the frontend seems like a difficult
proposition (if we wanted to do so). However, keeping the early-clobber flag on
the INLINEASM MI does not work for us, because it will cause the register's
live interval to end to soon (so it will not appear defined to be used as an
input).
Fortunately, fixing this does not seem hard: When forming the INLINEASM MI,
check to see if any of the early-clobber outputs are also inputs, and if so,
remove the early-clobber flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235283 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of merging everything together, look at the users of
GlobalVariables, and try to group them by function, to create
sets of globals used "together".
Using that information, a less-aggressive alternative is to keep merging
everything together *except* globals that are only ever used alone, that
is, those for which it's clearly non-profitable to merge with others.
In my testing, grouping by Function is too aggressive, but grouping by
BasicBlock is too conservative. Anything in-between isn't trivially
available, so stick with Function grouping for now.
cl::opts are added for testing; both enabled by default.
A few of the testcases aren't testing the merging proper, but just
various edge cases when merging does occur. Update them to use the
previous grouping behavior. Also, one of the tests is unrelated to
GlobalMerge; change it accordingly.
While there, switch to r234666' flags rather than the brutal -O3.
Differential Revision: http://reviews.llvm.org/D8070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235249 91177308-0d34-0410-b5e6-96231b3b80d8
Delete `DIDescriptor` and update the remaining users. I'll follow-up by
deleting subclasses in manageable groups (top-down).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235248 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using `DIDescriptor` and its subclasses in the `DebugInfoFinder`
API, as well as the rest of the API hanging around in `DebugInfo.h`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235240 91177308-0d34-0410-b5e6-96231b3b80d8
This commit removes `DebugLocList` and replaces it with
`DebugLocStream`.
- `DebugLocEntry` no longer contains its byte/comment streams.
- The `DebugLocEntry` list for a variable/inlined-at pair is allocated
on the stack, and released right after `DebugLocEntry::finalize()`
(possible because of the refactoring in r231023). Now, only one
list is in memory at a time now.
- There's a single unified stream for the `.debug_loc` section that
persists, stored in the new `DebugLocStream` data structure.
The last point is important: this collapses the nested `SmallVector<>`s
from `DebugLocList` into unified streams. We previously had something
like the following:
vec<tuple<Label, CU,
vec<tuple<BeginSym, EndSym,
vec<Value>,
vec<char>,
vec<string>>>>>
A `SmallVector` can avoid allocations, but is statically fairly large
for a vector: three pointers plus the size of the small storage, which
is the number of elements in small mode times the element size).
Nesting these is expensive, since an inner vector's size contributes to
the element size of an outer one. (Nesting any vector is expensive...)
In the old data structure, the outer vector's *element* size was 632B,
excluding allocation costs for when the middle and inner vectors
exceeded their small sizes. 312B of this was for the "three" pointers
in the vector-tree beneath it. If you assume 1M functions with an
average of 10 variable/inlined-at pairs each (in an LTO scenario),
that's almost 6GB (besides inner allocations), with almost 3GB for the
"three" pointers.
This came up in a heap profile a little while ago of a `clang -flto -g`
bootstrap, with `DwarfDebug::collectVariableInfo()` using something like
10-15% of the total memory.
With this commit, we have:
tuple<vec<tuple<Label, CU, Offset>>,
vec<tuple<BeginSym, EndSym, Offset, Offset>>,
vec<char>,
vec<string>>
The offsets are used to create `ArrayRef` slices of adjacent
`SmallVector`s. This reduces the number of vectors to four (unrelated
to the number of variable/inlined-at pairs), and caps the number of
allocations at the same number.
Besides saving memory and limiting allocations, this is NFC.
I don't know my way around this code very well yet, but I wonder if we
could go further: why stream to a side-table, instead of directly to the
output stream?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235229 91177308-0d34-0410-b5e6-96231b3b80d8
CatchHigh may be smaller than TryHigh if we reuse an outlined catch
handler for two different invokes with different EH states. We have no
evidence which shows that CatchHigh must be greater than TryHigh or
TryLow. We can revisit this if we turn out to be wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235223 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
- Handle TypePromoteFloat in switch statements
- Move an expression into an assert to avoid unused variable in
non-assert builds.
Reviewers: srhines, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9086
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235220 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235215 91177308-0d34-0410-b5e6-96231b3b80d8
Catch blocks which are empty may be in the same state as their try
blocks. It is not meaningful to give the catch block its own state
number in this case because it can't do anything exceptional.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235212 91177308-0d34-0410-b5e6-96231b3b80d8
Stop storing the `MDLocalVariable` in the `DebugLocEntry::Value`s. We
generate the list of `DebugLocEntry`s separately for each
variable/inlined-at pair, so the variable never actually changes here.
This is effectively NFC (aside from saving some memory and CPU time).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235202 91177308-0d34-0410-b5e6-96231b3b80d8
We can calculate the variable type up front before calling
`DebugLocEntry::finalize()`. In fact, since we only care about the type
if it's an `MDBasicType`, don't even bother resolving it using the type
identifier map.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235201 91177308-0d34-0410-b5e6-96231b3b80d8
This is a followon to r233681 - I'd misunderstood the semantics of FTRUNC,
and had confused it with (FP_ROUND ..., 0).
Thanks for Ahmed Bougacha for his post-commit review!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235191 91177308-0d34-0410-b5e6-96231b3b80d8
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235154 91177308-0d34-0410-b5e6-96231b3b80d8
r235050 dropped the inlined-at field from `MDLocalVariable`, deferring
to the `!dbg` attachments. Fix `UserValue` to take the `!dbg` into
account when differentiating between variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235140 91177308-0d34-0410-b5e6-96231b3b80d8
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235101 91177308-0d34-0410-b5e6-96231b3b80d8
Fix for test case found by James Molloy - TRUNCATE of constant build vectors can be more simply achieved by simply replacing with a new build vector node with the truncated value type - no need to touch the scalar operands at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235079 91177308-0d34-0410-b5e6-96231b3b80d8
The only type that isn't an integer, isn't floating point, and isn't
a vector; ladies and gentlemen, the gift that keeps on giving: x86_mmx!
Fixes PR23246.
Original message (reverted in r235062):
[CodeGen] Combine concat_vectors of scalars into build_vector.
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235072 91177308-0d34-0410-b5e6-96231b3b80d8
Delete `DIRef<>`, and replace the remaining uses of it with
`TypedDebugNodeRef<>`. To minimize code churn, I've added typedefs from
`MDTypeRef` to `DITypeRef` (etc.).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235071 91177308-0d34-0410-b5e6-96231b3b80d8
PR23080 is almost finished. With this commit, there's no consequential
API in `DIDescriptor` and its subclasses. What's left?
- Default-constructed to `nullptr`.
- Handy `const_cast<>` (constructed from `const`, but accessors are
non-`const`).
I think the safe way to catch those is to delete the classes and fix
compile errors. That'll be my next step, after I delete the `DITypeRef`
(etc.) wrapper around `MDTypeRef`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235069 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235064 91177308-0d34-0410-b5e6-96231b3b80d8
The way we split SEH catch-all blocks can leave some dead EH values
behind at -O0. Try to remove them, and if we fail, replace them all with
undef.
Fixes a crash when removing the old unreachable landingpad which is
still used by extractvalue instructions in the catch-all block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235061 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the accessors of `DIDerivedType` that downcast to
`MDDerivedType`, shifting the `cast<MDDerivedType>` into the callers.
Also remove `DIType::isValid()`, which is really just a check against
`nullptr` at this point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235059 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing gutting `DIDescriptor` subclasses; this edition,
`DICompileUnit` and `DIFile`. In the name of PR23080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235055 91177308-0d34-0410-b5e6-96231b3b80d8