Summary:
The class will obviously need improvement down the road. For one, there
is no reason that addPHINodes would have to be exposed like that. I
will make this and other improvements in follow-up patches.
The main goal is to be able to share this functionality. The
LoopLoadElimination pass I am working on needs it too. Later we can
move other clients as well (LV and Ashutosh's LICMVer).
Reviewers: hfinkel, ashutosh.nema
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10577
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241932 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes them available to the LoopVersioning class as that is moved
to its own module in the next patch.
Reviewers: ashutosh.nema, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241931 91177308-0d34-0410-b5e6-96231b3b80d8
This change includes a fix for https://code.google.com/p/chromium/issues/detail?id=499508#c3,
which required updating the visibility for symbols with eliminated definitions.
--Original Commit Message--
Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241466 91177308-0d34-0410-b5e6-96231b3b80d8
Currently some users of this function do this explicitly, and all the
rest forget to do this.
ThreadSanitizer was one of such users, and had missing debug
locations for calls into TSan runtime handling atomic operations,
eventually leading to poorly symbolized stack traces and malfunctioning
suppressions.
This is another change relevant to PR23837.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240460 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240131 91177308-0d34-0410-b5e6-96231b3b80d8
A reduction is a special kind of recurrence. In the loop vectorizer we currently
identify basic reductions. Future patches will extend this to identifying basic
recurrences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239835 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239761 91177308-0d34-0410-b5e6-96231b3b80d8
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239480 91177308-0d34-0410-b5e6-96231b3b80d8
on a per-function basis.
Previously some of the passes were conditionally added to ARM's pass pipeline
based on the target machine's subtarget. This patch makes changes to add those
passes unconditionally and execute them conditonally based on the predicate
functor passed to the pass constructors. This enables running different sets of
passes for different functions in the module.
rdar://problem/20542263
Differential Revision: http://reviews.llvm.org/D8717
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239325 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we can look at users, we can trivially do this: when we would
have otherwise disabled GlobalMerge (currently -O<3), we can just run
it for minsize functions, as it's usually a codesize win.
Differential Revision: http://reviews.llvm.org/D10054
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239087 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
A later change that has RewriteStatepointsForGC change function
attributes throughout the module depends on this.
Reviewers: reames, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238882 91177308-0d34-0410-b5e6-96231b3b80d8
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.
The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.
In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.
Differential Revision: http://reviews.llvm.org/D9763
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238071 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Allow hoisting of loads from values marked with dereferenceable_or_null
attribute. For values marked with the attribute perform
context-sensitive analysis to determine whether it's known-non-null or
not.
Patch by Artur Pilipenko!
Reviewers: hfinkel, sanjoy, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237593 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a pass for speculative execution of instructions for simple if-then (triangle) control flow. It's aimed at GPUs, but could perhaps be used in other contexts. Enabling this pass gives us a 1.0% geomean improvement on Google benchmark suites, with one benchmark improving 33%.
Credit goes to Jingyue Wu for writing an earlier version of this pass.
Patched by Bjarke Roune.
Test Plan:
This patch adds a set of tests in test/Transforms/SpeculativeExecution/spec.ll
The pass is controlled by a flag which defaults to having the pass not run.
Reviewers: eliben, dberlin, meheff, jingyue, hfinkel
Reviewed By: jingyue, hfinkel
Subscribers: majnemer, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9360
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237459 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This implements the initial version as was proposed earlier this year
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080462.html).
Since then Loop Access Analysis was split out from the Loop Vectorizer
and was made into a separate analysis pass. Loop Distribution becomes
the second user of this analysis.
The pass is off by default and can be enabled
with -enable-loop-distribution. There is currently no notion of
profitability; if there is a loop with dependence cycles, the pass will
try to split them off from other memory operations into a separate loop.
I decided to remove the control-dependence calculation from this first
version. This and the issues with the PDT are actively discussed so it
probably makes sense to treat it separately. Right now I just mark all
terminator instruction required which keeps identical CFGs for each
distributed loop. This seems to be working pretty well for 456.hmmer
where even though there is an empty if-then block in the distributed
loop initially, it gets completely removed.
The pass keeps DominatorTree and LoopInfo updated. I've tested this
with -loop-distribute-verify with the testsuite where we distribute ~90
loops. SimplifyLoop is violated in some cases and I have a FIXME
covering this.
Reviewers: hfinkel, nadav, aschwaighofer
Reviewed By: aschwaighofer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237358 91177308-0d34-0410-b5e6-96231b3b80d8
The array passed to LoadAndStorePromoter's constructor was a constant reference to a SmallVectorImpl, which is just the same as passing an ArrayRef.
Also, the data in the array can be 'const Instruction*' instead of 'Instruction*'. Its not possible to convert a SmallVectorImpl<T*> to SmallVectorImpl<const T*>, but ArrayRef does provide such a method.
Currently this added calls to makeArrayRef which should be a nop, but i'm going to kick off a discussion about improving ArrayRef to not need these.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237226 91177308-0d34-0410-b5e6-96231b3b80d8
The pass doesn't actually modify the module outside of the function being processed. The only confusing piece is that it both inserts calls and then inlines the resulting calls. Given that, it definitely invalidates module level analysis results, but many FunctionPasses do that.
Differential Revision: http://reviews.llvm.org/D9590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237185 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This gives frontend more precise control over collected coverage
information. User can still override these options by passing
-mllvm flags.
No functionality change.
Test Plan: regression test suite.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9539
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236687 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This helper function creates a ctor function, which calls sanitizer's
init function with given arguments. This constructor is then expected
to be added to module's ctors. The patch helps unifying how sanitizer
constructor functions are created, and how init functions are called
across all sanitizers.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236627 91177308-0d34-0410-b5e6-96231b3b80d8
This change is the second of 3 patches to add support for specifying
the profile output from the command line via -fprofile-instr-generate=<path>,
where the specified output path/file will be overridden by the
LLVM_PROFILE_FILE environment variable.
This patch adds the necessary support to the llvm instrumenter, specifically
a new member of GCOVOptions for clang to save the specified filename, and
support for calling the new compiler-rt interface from __llvm_profile_init.
Patch by Teresa Johnson. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236288 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This transformation reassociates a n-ary add so that the add can partially reuse
existing instructions. For example, this pass can simplify
void foo(int a, int b) {
bar(a + b);
bar((a + 2) + b);
}
to
void foo(int a, int b) {
int t = a + b;
bar(t);
bar(t + 2);
}
saving one add instruction.
Fixes PR22357 (https://llvm.org/bugs/show_bug.cgi?id=22357).
Test Plan: nary-add.ll
Reviewers: broune, dberlin, hfinkel, meheff, sanjoy, atrick
Reviewed By: sanjoy, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8950
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234855 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234220 91177308-0d34-0410-b5e6-96231b3b80d8
This re-adds float2int to the tree, after fixing PR23038. It turns
out the argument to APSInt() is true-if-unsigned, rather than
true-if-signed :(. Added testcase and explanatory comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233370 91177308-0d34-0410-b5e6-96231b3b80d8
This caused PR23008, compiles failing with: "Use still stuck around after Def is
destroyed: %.sroa.speculated"
Also reverting follow-up r233064.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233105 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible to have code that converts from integer to float, performs operations then converts back, and the result is provably the same as if integers were used.
This can come from different sources, but the most obvious is a helper function that uses floats but the arguments given at an inlined callsites are integers.
This pass considers all integers requiring a bitwidth less than or equal to the bitwidth of the mantissa of a floating point type (23 for floats, 52 for doubles) as exactly representable in floating point.
To reduce the risk of harming efficient code, the pass only attempts to perform complete removal of inttofp/fptoint operations, not just move them around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233062 91177308-0d34-0410-b5e6-96231b3b80d8
`StripDebug` was only used by tools/opt/opt.cpp in
`AddStandardLinkPasses()`, but opt.cpp adds the same pass based on its
command-line flag before it calls `AddStandardLinkPasses()`. Stripping
debug info twice isn't very useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232765 91177308-0d34-0410-b5e6-96231b3b80d8
By default we want our gcov emission to stay 4.2 compatible, which
means we need to continue emit the exit block last by default. We add
an option to emit it before the body for users that need it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232438 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
This pass interchanges loops to provide a more cache-friendly memory access.
For e.g. given a loop like -
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
A[j][i] = A[j][i]+B[j][i];
is interchanged to -
for(int j=0;j<N;j++)
for(int i=0;i<N;i++)
A[j][i] = A[j][i]+B[j][i];
This pass is currently disabled by default.
To give a brief introduction it consists of 3 stages-
LoopInterchangeLegality : Checks the legality of loop interchange based on Dependency matrix.
LoopInterchangeProfitability: A very basic heuristic has been added to check for profitibility. This will evolve over time.
LoopInterchangeTransform : Which does the actual transform.
LNT Performance tests shows improvement in Polybench/linear-algebra/kernels/mvt and Polybench/linear-algebra/kernels/gemver becnmarks.
TODO:
1) Add support for reductions and lcssa phi.
2) Improve profitability model.
3) Improve loop selection algorithm to select best loop for interchange. Currently the innermost loop is selected for interchange.
4) Improve compile time regression found in llvm lnt due to this pass.
5) Fix issues in Dependency Analysis module.
A special thanks to Hal for reviewing this code.
Review: http://reviews.llvm.org/D7499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231458 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231043 91177308-0d34-0410-b5e6-96231b3b80d8