at phis. This enables us to eliminate a lot of pointless zexts during the DAGCombine
phase. This fixes <rdar://problem/8760114>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126170 91177308-0d34-0410-b5e6-96231b3b80d8
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126155 91177308-0d34-0410-b5e6-96231b3b80d8
"dllimport" function must not be GlobalVariable, but Function. It is enough to check with GlobalValue.
test/CodeGen/X86/dll-linkage.ll is updated to check llc -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126110 91177308-0d34-0410-b5e6-96231b3b80d8
of a constant had a minor typo introduced when copying it from the book, which
caused it to favor negative approximations over positive approximations in many
cases. Positive approximations require fewer operations beyond the multiplication.
In the case of division by 3, we still generate code that is a single instruction
larger than GCC's code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126097 91177308-0d34-0410-b5e6-96231b3b80d8
test for that. With this change, test/CodeGen/X86/codegen-dce.ll no longer finds
any instructions to DCE, so delete the test.
Also renamed J and JP to I and IP in RecursivelyDeleteDeadPHINode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126088 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner folds the zext into complex load instructions. This patch
prevents this optimization on vectors since none of the supported targets
knows how to perform load+vector_zext in one instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126080 91177308-0d34-0410-b5e6-96231b3b80d8
No one uses *-mingw64. mingw-w64 is represented as {i686|x86_64}-w64-mingw32. In llvm side, i686 and x64 can be treated as similar way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125747 91177308-0d34-0410-b5e6-96231b3b80d8
transformation if we can't legally create a build vector of the correct
type. Check that we can make the transformation first, and add a TODO to
refactor this code with similar cases.
Fixes: PR9223 and rdar://9000350
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125631 91177308-0d34-0410-b5e6-96231b3b80d8
Machine instruction range consisting of only DBG_VALUE MIs only contributes consecutive labels in assembly output, which is harmless, and empty scope entry in DebugInfo, which confuses debugger tools.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125577 91177308-0d34-0410-b5e6-96231b3b80d8
have their low bits set to zero. This allows us to optimize
out explicit stack alignment code like in stack-align.ll:test4 when
it is redundant.
Doing this causes the code generator to start turning FI+cst into
FI|cst all over the place, which is general goodness (that is the
canonical form) except that various pieces of the code generator
don't handle OR aggressively. Fix this by introducing a new
SelectionDAG::isBaseWithConstantOffset predicate, and using it
in places that are looking for ADD(X,CST). The ARM backend in
particular was missing a lot of addressing mode folding opportunities
around OR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125470 91177308-0d34-0410-b5e6-96231b3b80d8
the shift amounts are in a suitably wide type so that
we don't generate out of range constant shift amounts.
This fixes PR9028.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125458 91177308-0d34-0410-b5e6-96231b3b80d8