Commit Graph

685 Commits

Author SHA1 Message Date
Simon Pilgrim
e2d3e4467e [X86][SSE] Vectorize v2i32 to v2f64 conversions
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.

Differential Revision: http://reviews.llvm.org/D10433

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239855 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-16 21:40:28 +00:00
Igor Breger
6ea3ad7e6e AVX-512: Implemented cvtsi2ss/d cvtusi2ss/d instructions with round control for KNL.
Added intrinsics for cvtsi2ss/d instructions.
Added tests for intrinsics and encoding.

Differential Revision: http://reviews.llvm.org/D10430

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239694 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-14 12:44:55 +00:00
Asaf Badouh
ce375dc63a re-apply 238809
AVX-512: Implemented GETEXP instruction for KNL and SKX
Added rounding mode modifier for SQRTPS/PD
Added tests for encoding and intrinsics.
CR:
http://reviews.llvm.org/D9991


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238923 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-03 13:41:48 +00:00
Elena Demikhovsky
23dc4bbf1d AVX-512: Implemented SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2 instructions for SKX and KNL.
Added tests for encoding.

By Igor Breger (igor.breger@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238917 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-03 10:56:40 +00:00
Simon Pilgrim
dd5cde6e60 [X86] Removed (unused) FSRL x86 operation
This patch removes the old X86ISD::FSRL op - which allowed float vectors to use the byte right shift operations (causing a domain switch....).

Since the refactoring of the shuffle lowering code this no longer has any use.

Differential Revision: http://reviews.llvm.org/D10169

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238906 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-03 08:32:36 +00:00
Asaf Badouh
aa9e1c528b revert 238809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238810 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-02 07:45:19 +00:00
Asaf Badouh
82fa06895e AVX-512: Implemented GETEXP instruction for KNL and SKX
Added rounding mode modifier for SQRTPS/PD
Added tests for encoding and intrinsics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238809 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-02 07:18:14 +00:00
Elena Demikhovsky
af0e519127 AVX-512: Implemented VRANGEPD and VRANGEPD instructions for SKX.
Implemented DAG lowering for all these forms.
Added tests for encoding.

By Igor Breger (igor.breger@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238738 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-01 11:05:34 +00:00
Elena Demikhovsky
9029910d9f AVX-512: Implemented VFIXUPIMMPD and VFIXUPIMMPS instructions for KNL and SKX
Implemented DAG lowering for all these forms.
Added tests for encoding.

by Igor Breger (igor.breger@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238728 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-01 06:50:49 +00:00
Matt Arsenault
5f3a6430d6 Add address space argument to isLegalAddressingMode
This is important because of different addressing modes
depending on the address space for GPU targets.

This only adds the argument, and does not update
any of the uses to provide the correct address space.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238723 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-01 05:31:59 +00:00
Chandler Carruth
828f5b807c [x86] Implement a faster vector population count based on the PSHUFB
in-register LUT technique.

Summary:
A description of this technique can be found here:
http://wm.ite.pl/articles/sse-popcount.html

The core of the idea is to use an in-register lookup table and the
PSHUFB instruction to compute the population count for the low and high
nibbles of each byte, and then to use horizontal sums to aggregate these
into vector population counts with wider element types.

On x86 there is an instruction that will directly compute the horizontal
sum for the low 8 and high 8 bytes, giving vNi64 popcount very easily.
Various tricks are used to get vNi32 and vNi16 from the vNi8 that the
LUT computes.

The base implemantion of this, and most of the work, was done by Bruno
in a follow up to D6531. See Bruno's detailed post there for lots of
timing information about these changes.

I have extended Bruno's patch in the following ways:

0) I committed the new tests with baseline sequences so this shows
   a diff, and regenerated the tests using the update scripts.

1) Bruno had noticed and mentioned in IRC a redundant mask that
   I removed.

2) I introduced a particular optimization for the i32 vector cases where
   we use PSHL + PSADBW to compute the the low i32 popcounts, and PSHUFD
   + PSADBW to compute doubled high i32 popcounts. This takes advantage
   of the fact that to line up the high i32 popcounts we have to shift
   them anyways, and we can shift them by one fewer bit to effectively
   divide the count by two. While the PSHUFD based horizontal add is no
   faster, it doesn't require registers or load traffic the way a mask
   would, and provides more ILP as it happens on different ports with
   high throughput.

3) I did some code cleanups throughout to simplify the implementation
   logic.

4) I refactored it to continue to use the parallel bitmath lowering when
   SSSE3 is not available to preserve the performance of that version on
   SSE2 targets where it is still much better than scalarizing as we'll
   still do a bitmath implementation of popcount even in scalar code
   there.

With #1 and #2 above, I analyzed the result in IACA for sandybridge,
ivybridge, and haswell. In every case I measured, the throughput is the
same or better using the LUT lowering, even v2i64 and v4i64, and even
compared with using the native popcnt instruction! The latency of the
LUT lowering is often higher than the latency of the scalarized popcnt
instruction sequence, but I think those latency measurements are deeply
misleading. Keeping the operation fully in the vector unit and having
many chances for increased throughput seems much more likely to win.

With this, we can lower every integer vector popcount implementation
using the LUT strategy if we have SSSE3 or better (and thus have
PSHUFB). I've updated the operation lowering to reflect this. This also
fixes an issue where we were scalarizing horribly some AVX lowerings.

Finally, there are some remaining cleanups. There is duplication between
the two techniques in how they perform the horizontal sum once the byte
population count is computed. I'm going to factor and merge those two in
a separate follow-up commit.

Differential Revision: http://reviews.llvm.org/D10084

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238636 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-30 03:20:59 +00:00
Elena Demikhovsky
c4a426be4f AVX-512: Added VBROADCASTF64X4, VBROADCASTF64X2, VBROADCASTI32X8, and other instructions from this set
Added encoding tests.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237557 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-18 06:42:57 +00:00
Daniel Sanders
f01f1c413a [x86] Distinguish the 'o', 'v', 'X', and 'i' inline assembly memory constraints.
Summary:
But still handle them the same way since I don't know how they differ on
this target.

Of these, 'o' and 'v' are not tested but were already implemented.

I'm not sure why 'i' is required for X86 since it's supposed to be an
immediate constraint rather than a memory constraint. A test asserts
without it so I've included it for now.

No functional change intended.

Reviewers: nadav

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8254


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237517 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-16 12:09:54 +00:00
Eric Christopher
0552d51c45 Migrate existing backends that care about software floating point
to use the information in the module rather than TargetOptions.

We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.

For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.

Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-12 01:26:05 +00:00
Elena Demikhovsky
8189eb4d7e AVX-512: Added SKX instructions and intrinsics:
{add/sub/mul/div/} x {ps/pd} x {128/256} 2. max/min with sae

By Asaf Badouh (asaf.badouh@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236971 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-11 06:05:05 +00:00
Pat Gavlin
5c7f7462e4 Extend the statepoint intrinsic to allow statepoints to be marked as transitions from GC-aware code to code that is not GC-aware.
This changes the shape of the statepoint intrinsic from:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)

to:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)

This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.

In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.

Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.

Differential Revision: http://reviews.llvm.org/D9501

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236888 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-08 18:07:42 +00:00
Matthias Braun
bbff669c18 Change getTargetNodeName() to produce compiler warnings for missing cases, fix them
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236775 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-07 21:33:59 +00:00
Elena Demikhovsky
d08d0340e5 AVX-512: Added all forms of FP compare instructions for KNL and SKX.
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.

By Igor Breger (igor.breger@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236714 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-07 11:24:42 +00:00
Elena Demikhovsky
125a76c502 AVX-512: added calling convention for i1 vectors in 32-bit mode.
Fixed some bugs in extend/truncate for AVX-512 target.
Removed VBROADCASTM (masked broadcast) node, since it is not used any more.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236420 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-04 12:40:50 +00:00
Elena Demikhovsky
70a6f4522a AVX-512: added integer "add" and "sub" instructions with saturation for SKX
with intrinsics and tests

by Asaf Badouh (asaf.badouh@intel.com)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236418 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-04 12:35:55 +00:00
Sanjay Patel
0332323ab6 [x86] Implement combineRepeatedFPDivisors
Set the transform bar at 2 divisions because the fastest current
x86 FP divider circuit is in SandyBridge / Haswell at 10 cycle
latency (best case) relative to a 5 cycle multiplier. 
So that's the worst case for this transform (no latency win), 
but multiplies are obviously pipelined while divisions are not,
so there's still a big throughput win which we would expect to
show up in typical FP code.

These are the sequences I'm comparing:

  divss   %xmm2, %xmm0
  mulss   %xmm1, %xmm0
  divss   %xmm2, %xmm0

Becomes:

  movss   LCPI0_0(%rip), %xmm3    ## xmm3 = mem[0],zero,zero,zero
  divss   %xmm2, %xmm3
  mulss   %xmm3, %xmm0
  mulss   %xmm1, %xmm0
  mulss   %xmm3, %xmm0

[Ignore for the moment that we don't optimize the chain of 3 multiplies
into 2 independent fmuls followed by 1 dependent fmul...this is the DAG
version of: https://llvm.org/bugs/show_bug.cgi?id=21768 ...if we fix that,
then the transform becomes even more profitable on all targets.]

Differential Revision: http://reviews.llvm.org/D8941



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235012 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-15 15:22:55 +00:00
Daniel Sanders
6d9e62f432 Make each target map all inline assembly memory constraints to InlineAsm::Constraint_m. NFC.
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.

Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D8173


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232373 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-16 13:13:41 +00:00
JF Bastien
81338a4890 Mutate TargetLowering::shouldExpandAtomicRMWInIR to specifically dictate how AtomicRMWInsts are expanded.
Summary:
In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all.

This does not represent a behavioural change and as such no tests were added.

Patch by: Richard Diamond.

Reviewers: jfb

Reviewed By: jfb

Subscribers: jfb, aemerson, t.p.northover, llvm-commits

Differential Revision: http://reviews.llvm.org/D7713

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231250 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 15:47:57 +00:00
Sanjay Patel
4549d733da remove enum value names from comments; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231129 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-03 20:58:35 +00:00
Eric Christopher
acdd4442cb getRegForInlineAsmConstraint wants to use TargetRegisterInfo for
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230699 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-26 22:38:43 +00:00
Eric Christopher
a01bc6a59f Remove an argument-less call to getSubtargetImpl from TargetLoweringBase.
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230583 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-26 00:00:24 +00:00
Elena Demikhovsky
fdafc8fd5e AVX-512: recommitted 229837 + bugfix + test
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230223 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 15:12:31 +00:00
Benjamin Kramer
2b17108064 Remove dead prototype.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230137 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-21 14:35:00 +00:00
Eric Christopher
8c4bb575e1 Revert "AVX-512: Full implementation for VRNDSCALESS/SD instructions and intrinsics."
The instructions were being generated on architectures that don't support avx512.

This reverts commit r229837.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229942 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 00:45:28 +00:00
Elena Demikhovsky
675d06d1d0 AVX-512: Full implementation for VRNDSCALESS/SD instructions and intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229837 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 10:48:04 +00:00
Elena Demikhovsky
87483ed180 AVX-512: Added support for FP instructions with embedded rounding mode.
By Asaf Badouh <asaf.badouh@intel.com>



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229645 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 07:59:20 +00:00
Ahmed Bougacha
ec35069525 [CodeGen] Add hook/combine to form vector extloads, enabled on X86.
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."

That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).

The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.

It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up.  If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion.  At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.

This optimization is enabled unconditionally on X86.

Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).

Also note that the existing combine that forms extloads is now also
enabled on legal vectors.  This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.

Differential Revision: http://reviews.llvm.org/D6904


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228325 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 18:31:02 +00:00
Bruno Cardoso Lopes
04715c9915 [X86][MMX] Handle i32->mmx conversion using movd
Implement a BITCAST dag combine to transform i32->mmx conversion patterns
into a X86 specific node (MMX_MOVW2D) and guarantee that moves between
i32 and x86mmx are better handled, i.e., don't use store-load to do the
conversion..

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228293 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 13:23:07 +00:00
Eric Christopher
8115b6b867 Reuse a bunch of cached subtargets and remove getSubtarget calls
without a Function argument.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227814 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-02 17:38:43 +00:00
Eric Christopher
9003c8d02f Remove the last vestiges of resetOperationActions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227648 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-31 00:21:17 +00:00
Elena Demikhovsky
b9d3801cd2 AVX-512: Added FMA intrinsics with rounding mode
By Asaf Badouh and Elena Demikhovsky

Added special nodes for rounding: FMADD_RND, FMSUB_RND..
It will prevent merge between nodes with rounding and other standard nodes.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227303 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 10:21:27 +00:00
David Majnemer
b3065539bd X86: Don't make illegal GOTTPOFF relocations
"ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
relocation target a movq or addq instruction.

Prohibit the truncation of such loads to movl or addl.

This fixes PR22083.

Differential Revision: http://reviews.llvm.org/D6839

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225250 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 07:12:52 +00:00
Andrea Di Biagio
70a7cda495 [CodeGenPrepare] Teach when it is profitable to speculate calls to @llvm.cttz/ctlz.
If the control flow is modelling an if-statement where the only instruction in
the 'then' basic block (excluding the terminator) is a call to cttz/ctlz,
CodeGenPrepare can try to speculate the cttz/ctlz call and simplify the control
flow graph.

Example:
\code
entry:
  %cmp = icmp eq i64 %val, 0
  br i1 %cmp, label %end.bb, label %then.bb

then.bb:
  %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
  br label %end.bb

end.bb:
  %cond = phi i64 [ %c, %then.bb ], [ 64, %entry]
\code

In this example, basic block %then.bb is taken if value %val is not zero.
Also, the phi node in %end.bb would propagate the size-of in bits of %val
only if %val is equal to zero.

With this patch, CodeGenPrepare will try to hoist the call to cttz from %then.bb
into basic block %entry only if cttz is cheap to speculate for the target.

Added two new hooks in TargetLowering.h to let targets customize the behavior
(i.e. decide whether it is cheap or not to speculate calls to cttz/ctlz). The
two new methods are 'isCheapToSpeculateCtlz' and 'isCheapToSpeculateCttz'.
By default, both methods return 'false'.
On X86, method 'isCheapToSpeculateCtlz' returns true only if the target has
LZCNT. Method 'isCheapToSpeculateCttz' only returns true if the target has BMI.

Differential Revision: http://reviews.llvm.org/D6728


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224899 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-28 11:07:35 +00:00
Michael Kuperstein
fd350586f5 [DAGCombine] Slightly improve lowering of BUILD_VECTOR into a shuffle.
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.

This fixes PR15872 and provides a partial fix for PR21711.

Differential Revision: http://reviews.llvm.org/D6678

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224429 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 12:32:17 +00:00
Elena Demikhovsky
11fb1d0eb5 AVX-512: Added all forms of COMPRESS instruction
+ intrinsics + tests


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224019 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-11 15:02:24 +00:00
Elena Demikhovsky
5f9c438577 AVX-512: Intrinsics for ERI
3 instructions: vrcp28, vrsqrt28, vexp2, only vector forms.
Intrinsics include SAE (Suppres All Exceptions) parameter.

http://reviews.llvm.org/D6214



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221774 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-12 07:31:03 +00:00
Sanjay Patel
e7c966f067 Use rcpss/rcpps (X86) to speed up reciprocal calcs (PR21385).
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).

For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.

We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.

Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.

More background here: http://llvm.org/bugs/show_bug.cgi?id=21385

Differential Revision: http://reviews.llvm.org/D6175



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221706 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-11 20:51:00 +00:00
Quentin Colombet
d465eced34 [X86] Lower VSELECT into SHRUNKBLEND when we shrink the bits used into the
condition to match a blend.
This prevents optimizations that work on VSELECT to perform invalid
transformations. Indeed, the optimized condition does not match the vector
boolean content that is expected and bad things may happen.

This patch yields the exact same code on the whole test-suite + specs (-O3 and
-O3 -march=core-avx2), it improves one test case (vector-blend.ll) and fixes a
bug reduced in vselect-avx.ll.

<rdar://problem/18819506>


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221429 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-06 02:25:03 +00:00
Ahmed Bougacha
40453da779 [X86] 8bit divrem: Improve codegen for AH register extraction.
For 8-bit divrems where the remainder is used, we used to generate:
    divb  %sil
    shrw  $8, %ax
    movzbl  %al, %eax

That was to avoid an H-reg access, which is problematic mainly because
it isn't possible in REX-prefixed instructions.

This patch optimizes that to:
    divb  %sil
    movzbl  %ah, %eax

To do that, we explicitly extend AH, and extract the L-subreg in the
resulting register.  The extension is done using the NOREX variants of
MOVZX.  To support signed operations, MOVSX_NOREX is also added.
Further, this introduces a new SDNode type, [us]divrem_ext_hreg, which is
then lowered to a sequence containing a single zext (rather than 2).

Differential Revision: http://reviews.llvm.org/D6064


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221176 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-03 20:26:35 +00:00
Sanjay Patel
a46f06efe2 Use rsqrt (X86) to speed up reciprocal square root calcs
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.

For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).

This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..

See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900

Differential Revision: http://reviews.llvm.org/D5658



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220570 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-24 17:02:16 +00:00
Ahmed Bougacha
4d962b05ca [X86] Improve mul w/ overflow codegen, to MUL8+SETO.
Currently, @llvm.smul.with.overflow.i8 expands to 9 instructions, where
3 are really needed.

This adds X86ISD::UMUL8/SMUL8 SD nodes, and custom lowers them to
MUL8/IMUL8 + SETO.

i8 is a special case because there is no two/three operand variants of
(I)MUL8, so the first operand and return value need to go in AL/AX.

Also, we can't write patterns for these instructions: TableGen refuses
patterns where output operands don't match SDNode results. In this case,
instructions where the output operand is an implicitly defined register.

A related special case (and FIXME) exists for MUL8 (X86InstrArith.td):

  // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
  // This probably ought to be moved to a def : Pat<> if the
  // syntax can be accepted.
  [(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]

Ideally, these go away with UMUL8, but we still need to improve TableGen
support of implicit operands in patterns.

Before this change:
  movsbl  %sil, %eax
  movsbl  %dil, %ecx
  imull   %eax, %ecx
  movb    %cl, %al
  sarb    $7, %al
  movzbl  %al, %eax
  movzbl  %ch, %esi
  cmpl    %eax, %esi
  setne   %al

After:
  movb    %dil, %al
  imulb   %sil
  seto    %al

Also, remove a made-redundant testcase for PR19858, and enable more FastISel
ALU-overflow tests for SelectionDAG too.

Differential Revision: http://reviews.llvm.org/D5809


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220516 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-23 21:55:31 +00:00
Eric Christopher
2e07dedce3 constify TargetMachine parameter for X86TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218804 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 20:38:22 +00:00
Sanjay Patel
72447214a6 Don't repeat function/variable name in comment. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218791 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 19:39:32 +00:00
Robin Morisset
79826e015e Lower idempotent RMWs to fence+load
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).

This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.

Details of the optimization are discussed in D5091.

Test Plan: make check-all + a new test

Reviewers: jfb

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5422

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218455 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 17:27:43 +00:00
Chandler Carruth
6a289bb491 [x86] Remove the defunct X86ISD::BLENDV entry -- we use vector selects
for this now.

Should prevent folks from running afoul of this and not knowing why
their code won't instruction select the way I just did...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218436 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 01:16:01 +00:00