in POWER8:
vadduqm
vaddeuqm
vaddcuq
vaddecuq
vsubuqm
vsubeuqm
vsubcuq
vsubecuq
In addition to adding the instructions themselves, it also adds support for the
v1i128 type for intrinsics (Intrinsics.td, Function.cpp, and
IntrinsicEmitter.cpp).
http://reviews.llvm.org/D9081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238144 91177308-0d34-0410-b5e6-96231b3b80d8
Stop creating symbols we don't need in `DwarfStringPool`. The consumers
only call `DwarfStringPoolEntryRef::getSymbol()` when DWARF is
relocatable, so this just stops creating the unused symbols when it's
not. This drops memory usage from 851 MB to 845 MB, around 0.7%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238122 91177308-0d34-0410-b5e6-96231b3b80d8
Mint a new function, `AsmPrinter::emitDwarfStringOffset()`, which takes
a `DwarfStringPoolEntryRef`. When DWARF is relocatable across sections,
this defers to `emitSectionOffset()` and emits the `MCSymbol`;
otherwise, just emit the offset directly, without using any intermediate
symbols.
`EmitLabelDifference()` is already optimized to emit absolute label
differences cheaply when possible, so there aren't any major memory
savings here (853 MB down to 851 MB, or 0.2%). However, it prepares for
making the `MCSymbol`s in the `DwarfStringPool` optional.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238119 91177308-0d34-0410-b5e6-96231b3b80d8
Expose the `DwarfStringPool` entry in a header, and store a pointer to
it directly in `DIEString`. Instead of choosing at creation time how to
emit it, use the `dwarf::Form` to determine that at emission time.
Besides avoiding the other `DIEValue`, this shaves two pointers off of
`DIEString`; the data is now a single pointer. This is a nice cleanup
on its own -- and drops memory usage from 861 MB down to 853 MB, around
0.9% -- but it's also preparation for passing `DIEValue`s by value.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238117 91177308-0d34-0410-b5e6-96231b3b80d8
Extract out `DwarfStringPoolEntry` and `DwarfStringPoolRef` from
`DwarfStringPool` so that downstream users can start using
`DwarfStringPool::getEntry()` directly. This will allow users to delay
the decision between emitting a symbol or an offset until later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238116 91177308-0d34-0410-b5e6-96231b3b80d8
Android's API-9 SDK is missing log2 builtins. A previous commit added
support for building against this API revision but this requires log2l
to be present. (And it doesn't seem to be defined, despite being in
the headers.)
Author: pasaulais (Pierre-Andre Saulais)
Differential Revision: http://reviews.llvm.org/D9884
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238111 91177308-0d34-0410-b5e6-96231b3b80d8
On GPU targets, materializing constants is cheap and stores are
expensive, so only doing this for zero vectors was silly.
Most of the new testcases aren't optimally merged, and are for
later improvements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238108 91177308-0d34-0410-b5e6-96231b3b80d8
Remove all virtual functions from `DIEValue`, dropping the vtable
pointer from its layout. Instead, create "impl" functions on the
subclasses, and use the `DIEValue::Type` to implement the dynamic
dispatch.
This is necessary -- obviously not sufficient -- for passing `DIEValue`s
around by value. However, this change stands on its own: we make tons
of these. I measured a drop in memory usage from 888 MB down to 860 MB,
or around 3.2%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238084 91177308-0d34-0410-b5e6-96231b3b80d8
This is part of the work to remove TargetMachine::resetTargetOptions.
In this patch, instead of updating global variable NoFramePointerElim in
resetTargetOptions, its use in DisableFramePointerElim is replaced with a call
to TargetFrameLowering::noFramePointerElim. This function determines on a
per-function basis if frame pointer elimination should be disabled.
There is no change in functionality except that cl:opt option "disable-fp-elim"
can now override function attribute "no-frame-pointer-elim".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238080 91177308-0d34-0410-b5e6-96231b3b80d8
This is in preparation to making changes needed to stop resetting
NoFramePointerElim in resetTargetOptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238079 91177308-0d34-0410-b5e6-96231b3b80d8
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.
The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.
In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.
Differential Revision: http://reviews.llvm.org/D9763
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238071 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a class for processing many recip codegen possibilities.
The TargetRecip class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238051 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to match armv6m to default to thumb, but will also be used by
Clang's driver and remove the current incomplete copy in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238036 91177308-0d34-0410-b5e6-96231b3b80d8
This change to VirtRegRewriter::addMBBLiveIns adds live-in registers for each
MachineBasicBlock's LiveIns set without isLiveIn checks as they are being added
because doing so is expensive. After all live-in registers are added, the LiveIn
vectors are sorted and uniqued.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238008 91177308-0d34-0410-b5e6-96231b3b80d8
Shave a pointer off of `MCSymbolName` by storing `StringMapEntry<bool>*`
instead of `StringRef`. This brings `sizeof(MCSymbol)` down to 64 on
64-bit platforms, a nice round number. My profile showed memory
dropping from 914 MB down to 908 MB, roughly 0.7%. Other than memory
usage, no functionality change here.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238005 91177308-0d34-0410-b5e6-96231b3b80d8
Save a pointer for each `MCSymbol`, bringing `llc` memory usage down
from 920 MB to 914 MB, around ~0.6%.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238003 91177308-0d34-0410-b5e6-96231b3b80d8
Lift `MCSymbolData::Index` up a level to `MCSymbol`, as preparation for
packing it into the bitfield in `MCSymbol`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238001 91177308-0d34-0410-b5e6-96231b3b80d8
llvm/include/llvm/DebugInfo/DIContext.h:144:11: error: overriding ‘virtual llvm::LoadedObjectInfo::~LoadedObjectInfo() noexcept (true)’
It seems the destructor in the base class may not be "default".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238000 91177308-0d34-0410-b5e6-96231b3b80d8
Previously `SDDbgValue`s used the general allocator that lives for all
of `SelectionDAG`. Instead, give them their own allocator, and reset it
whenever `SDDbgInfo::clear()` is called, plugging a spiritual leak.
This drops `SelectionDAGBuilder::visitIntrinsicCall()` off of my heap
profile (was at around 2% of `llc` for codegen of `-flto -g`). Thanks
to Pete Cooper for spotting the problem and suggesting the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237998 91177308-0d34-0410-b5e6-96231b3b80d8