This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239886 91177308-0d34-0410-b5e6-96231b3b80d8
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239885 91177308-0d34-0410-b5e6-96231b3b80d8
virtual interface on AliasAnalysis only deals with ModRef information.
This interface was both computing memory locations by using TLI and
other tricks to estimate the size of memory referenced by an operand,
and computing ModRef information through similar investigations. This
change narrows the scope of the virtual interface on AliasAnalysis
slightly.
Note that all of this code could live in BasicAA, and be done with
a single investigation of the argument, if it weren't for the fact that
the generic code in AliasAnalysis::getModRefBehavior for a callsite
calls into the virtual aspect of (now) getArgModRefInfo. But this
patch's arrangement seems a not terrible way to go for now.
The other interesting wrinkle is how we could reasonably extend LLVM
with support for custom memory location sizes and mod/ref behavior for
library routines. After discussions with Hal on the review, the
conclusion is that this would be best done by fleshing out the much
desired support for extensions to TLI, and support these types of
queries in that interface where we would likely be doing other library
API recognition and analysis.
Differential Revision: http://reviews.llvm.org/D10259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239884 91177308-0d34-0410-b5e6-96231b3b80d8
The patch triggers a miscompile on SPEC 2006 403.gcc with the (ref)
200.i and scilab.i inputs. I opened PR23866 to track analysis of this.
This reverts commit r238793.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239880 91177308-0d34-0410-b5e6-96231b3b80d8
Adds static_asserts to ensure alignment of concatenated objects is
correct, and fixes them where they are not.
Also changes the definition of AlignOf to use constexpr, except on
MSVC, to avoid enum comparison warnings from GCC.
(There's not too much of this in llvm itself, most of the fun is in
clang).
This seems to make LLVM actually work without Bus Error on 32bit
sparc.
Differential Revision: http://reviews.llvm.org/D10271
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239872 91177308-0d34-0410-b5e6-96231b3b80d8
Without this the included unit test would assert in
assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239871 91177308-0d34-0410-b5e6-96231b3b80d8
Different object formats represent references from dwarf in different ways.
ELF uses a relocation to the referenced point (except for .dwo) and
COFF/MachO use the offset of the referenced point inside its section.
This patch renames emitSectionOffset because
* It doesn't produce an offset on ELF.
* It changes behavior depending on how DWARF is represented, so adding
dwarf to its name is probably a good thing.
The patch also adds an option to force the use of offsets.That avoids
funny looking code like
if (!UseOffsets)
Asm->emitSectionOffset....
It was correct, but read as if the ! was inverted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239866 91177308-0d34-0410-b5e6-96231b3b80d8
These were originally added in r227242,
but that patch was reverted because it
caused a failure on AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239860 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.
Differential Revision: http://reviews.llvm.org/D10433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239855 91177308-0d34-0410-b5e6-96231b3b80d8
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239849 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch the bitcode reader would read a module from a file
that contained in order:
* Any number of non MODULE_BLOCK sub blocks.
* One MODULE_BLOCK
* Any number of non MODULE_BLOCK sub blocks.
* 4 '\n' characters to handle OS X's ranlib.
Since we support lazy reading of modules, any information that is relevant
for the module has to be in the MODULE_BLOCK or before it. We don't gain
anything from checking what is after.
This patch then changes the reader to stop once the MODULE_BLOCK has been
successfully parsed.
This avoids the ugly special case for .bc files in an archive and makes it
easier to embed bitcode files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239845 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When propagating mass through irregular loops, the mass flowing through
each loop header may not be equal. This was causing wrong frequencies
to be computed for irregular loop headers.
Fixed by keeping track of masses flowing through each of the headers in
an irregular loop. To do this, we now keep track of per-header backedge
weights. After the loop mass is distributed through the loop, the
backedge weights are used to re-distribute the loop mass to the loop
headers.
Since each backedge will have a mass proportional to the different
branch weights, the loop headers will end up with a more approximate
weight distribution (as opposed to the current distribution that assumes
that every loop header is the same).
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239843 91177308-0d34-0410-b5e6-96231b3b80d8
While completely undefined registers are easy to catch and get their
<undef> flag early in ProcessImplicitDefs/RegisterCoalescer reading from
a partially defined register where just the subreg happens to be
undefined is harder to catch so we only add the undef flag in the
virtual register rewriting step.
No testcase as I cannot reproduce the problem on any of the in-tree targets at
the moment.
This fixes rdar://21387089
Differential Revision: http://reviews.llvm.org/D10470
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239838 91177308-0d34-0410-b5e6-96231b3b80d8
LaneMasks as given by getSubRegIndexLaneMask() have a limited number of
of bits, so for targets with more than 31 disjunct subregister there may
be cases where:
getSubReg(Reg,A) does not overlap getSubReg(Reg,B)
but we still have
(getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0.
I had hoped to keep this an implementation detail of the tablegen but as
my next commit shows we can avoid unnecessary imp-defs operands if we
know that the lane masks in use are precise.
This is in preparation to http://reviews.llvm.org/D10470.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239837 91177308-0d34-0410-b5e6-96231b3b80d8
Old names, new names, and what they really mean:
- IsWin64 -> IsWin64CC: This is true on non-Windows x86_64 platforms
when the ms_abi calling convention is used.
- IsWinEH -> IsWin64Prologue: True when the target is Win64, regardless
of calling convention. Changes the prologue to obey the constraints of
the Win64 unwinder.
- NeedsWinEH -> NeedsWinCFI: We're using the win64 prologue *and* the we
want .xdata unwind tables. Analogous to NeedsDwarfCFI.
NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239836 91177308-0d34-0410-b5e6-96231b3b80d8
A reduction is a special kind of recurrence. In the loop vectorizer we currently
identify basic reductions. Future patches will extend this to identifying basic
recurrences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239835 91177308-0d34-0410-b5e6-96231b3b80d8
This commit reports an error when a machine function from a MIR file that contains
LLVM IR can't find a function with the same name in the loaded LLVM IR module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239831 91177308-0d34-0410-b5e6-96231b3b80d8
This is an updated version of the patch that was checked in at:
http://reviews.llvm.org/rL237046
but subsequently reverted because it exposed a bug in the DAG Combiner:
http://reviews.llvm.org/D9893
This time, there's an enablement flag ("EnableFMFInDAG") around the code in
SelectionDAGBuilder where we copy the set of FP optimization flags from IR
instructions to DAG nodes. So, in theory, there should be no functional change
from this patch as-is, but it will allow testing with the added functionality
to proceed via "-enable-fmf-dag" passed to llc.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
Differential Revision: http://reviews.llvm.org/D10403
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239828 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r239539. Don't assume the collected number of
stores is the same vector size. Just take the first N
stores to fill the vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239825 91177308-0d34-0410-b5e6-96231b3b80d8
Any combination of +-inf/+-inf is NaN so it's already ignored with
nnan and we can skip checking for ninf. Also rephrase logic in comments
a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239821 91177308-0d34-0410-b5e6-96231b3b80d8
The cmake check for whether libatomic could be used had been
unconditionally setting the result to false. Which was somewhat
fortunate, because the prerequisite check for whether it was *needed*
was always claiming it was, even if it was not.
However, this made platforms where libatomic is actually necessary
fail to link.
Differential Revision: http://reviews.llvm.org/D10453
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239819 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Relocs that can be converted from absolute to PC-relative now do so if IsPCRel
is true. Relocs that require PC-relative now call llvm_unreachable() if IsPCRel
is false and similarly those that require absolute assert that IsPCRel is false.
Note that while it looks like some relocs (e.g. R_MIPS_26) can be converted into
the MIPS32r6/MIPS64r6 relocs (R_MIPS_PC*_S2), it isn't actually valid to do so.
Placeholders have been left in the testcase for unsupported relocs and relocs
that cannot be generated at the moment.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits, rafael
Differential Revision: http://reviews.llvm.org/D10184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239817 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10381
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239815 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This affects other tools so the previous C++ API has been retained as a
deprecated function for the moment. Clang has been updated with a trivial
patch (not covered by the pre-commit review) to avoid breaking -Werror builds.
Other in-tree tools will be fixed with similar patches.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
The first time this was committed it accidentally fixed an inconsistency in
triples in llvm-mc and this caused a failure. This inconsistency was fixed in
r239808.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10366
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239812 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
GetTarget() may modify TripleName without also updating TheTriple.
This can lead to situations where the MCObjectStreamer has a different triple
to the rest of LLVM.
This inconsistency caused sparc-little-endian.s to pass on Windows because most
of LLVM had sparcel-pc-win32 while MCObjectStreamer had "". I believe the same
kind of thing was also true of Darwin.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin, rafael
Differential Revision: http://reviews.llvm.org/D10450
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239808 91177308-0d34-0410-b5e6-96231b3b80d8
The successors cache is now a local variable, making it more visible that it
is only valid for the MBB being processed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239807 91177308-0d34-0410-b5e6-96231b3b80d8
When we multiply two 64-bit vectors, we extract lower and upper part and use the PMULUDQ instruction.
When one of the operands is a constant, the upper part may be zero, we know this at compile time.
Example: %a = mul <4 x i64> %b, <4 x i64> < i64 5, i64 5, i64 5, i64 5>.
I'm checking the value of the upper part and prevent redundant "multiply", "shift" and "add" operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239802 91177308-0d34-0410-b5e6-96231b3b80d8
These are really immediate DUPs, and suffer from the same problem
with long instructions with a high/2 variant (e.g. smull).
By extending a MOVI (or DUP, before this patch), we can avoid an ext
on the other operand of the long instruction, e.g. turning:
ext.16b v0, v0, v0, #8
movi.4h v1, #0x53
smull.4s v0, v0, v1
into:
movi.8h v1, #0x53
smull2.4s v0, v0, v1
While there, add a now-necessary combine to fold (VT NVCAST (VT x)).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239799 91177308-0d34-0410-b5e6-96231b3b80d8