ordered correctly. Previously it would get in trouble when
two patterns were too similar and give them nondet ordering.
We force this by using the record ID order as a fallback.
The testsuite diff is due to alpha patterns being ordered
slightly differently, the change is a semantic noop afaict:
< lda $0,-100($16)
---
> subq $16,100,$0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97509 91177308-0d34-0410-b5e6-96231b3b80d8
structural matching code to be factored and shared this
shrinks the X86 isel table from 86537 to 83890 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97442 91177308-0d34-0410-b5e6-96231b3b80d8
This allows formation of OpcodeSwitch for top level patterns, in
particular on X86. This saves about 1K of data space in the x86
table and makes the dispatch much more efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97440 91177308-0d34-0410-b5e6-96231b3b80d8
ComplexPattern at the root be generated multiple times, once
for each opcode they are part of. This encourages factoring
because the opcode checks get treated just like everything
else in the matcher.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97439 91177308-0d34-0410-b5e6-96231b3b80d8
to a scope where every child starts with a CheckOpcode, but
executes more efficiently. Enhance DAGISelMatcherOpt to
form it.
This also fixes a bug in CheckOpcode: apparently the SDNodeInfo
objects are not pointer comparable, we have to compare the
enum name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97438 91177308-0d34-0410-b5e6-96231b3b80d8
pair. This encourages MorphNodeTo formation, this gets us 200
more MorphNodeTo's on X86 and shrinks the table a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97434 91177308-0d34-0410-b5e6-96231b3b80d8
so that we get grouping at the top level.
Add an optimization to reorder type check & record nodes
after opcode checks. We prefer to expose tree shape
matching which improves grouping and will enhance the next
optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97432 91177308-0d34-0410-b5e6-96231b3b80d8
dispatcher method. This eliminates the dependence of the new isel's
generated code on the old isel's predicates, however some random
hand written isel code still uses them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97431 91177308-0d34-0410-b5e6-96231b3b80d8
specifies whether there is an output flag or not. Use this
instead of redundantly encoding the chain/flag results in the
output vtlist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97419 91177308-0d34-0410-b5e6-96231b3b80d8
even some the old isel didn't. There are several parts of
this that make me feel dirty, but it's no worse than the
old isel. I'll clean up the parts I can do without ripping
out the old one next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97415 91177308-0d34-0410-b5e6-96231b3b80d8
node is always guaranteed to have a particular type
instead of hacking in ISD::STORE explicitly. This allows
us to use implied types for a broad range of nodes, even
target specific ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97355 91177308-0d34-0410-b5e6-96231b3b80d8
with getType() == MVT::i32 etc. Teach it that two different
integer constants are contradictory. This cuts 1K off the X86
table, down to 98k
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97314 91177308-0d34-0410-b5e6-96231b3b80d8
predicates. For example if we have:
Scope:
CheckType i32
ABC
CheckType f32
DEF
CheckType i32
GHI
Then we know that we can transform this into:
Scope:
CheckType i32
Scope
ABC
GHI
CheckType f32
DEF
This reorders the check for the 'GHI' predicate above
the check for the 'DEF' predidate. However it is safe to do this
in this situation because we know that a node cannot have both an
i32 and f32 type.
We're now doing more factoring that the old isel did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97312 91177308-0d34-0410-b5e6-96231b3b80d8
as deeply into the pattern as we can get away with. In pratice, this
means "all the way to to the emitter code, but not across
ComplexPatterns". This substantially increases the amount of factoring
we get.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97305 91177308-0d34-0410-b5e6-96231b3b80d8
longer than 80 columns. This replaces the heavy-handed "textwidth"
mechanism, and makes the trailing-whitespace highlighting lazy so
that it isn't constantly jumping on the user during typing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97267 91177308-0d34-0410-b5e6-96231b3b80d8
gross little neighbor merging implementation. This one has
the benefit of not violating the ordering of patterns, so it
generates code that passes tests again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97218 91177308-0d34-0410-b5e6-96231b3b80d8
current design. This generates a matcher that successfully
runs, but it turns out that the factoring we're doing violates
the ordering of patterns, so we end up matching (e.g.) movups
where we want movaps. This won't due, but I'll address this in
a follow on patch. It's nice to not be on by default yet! :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97215 91177308-0d34-0410-b5e6-96231b3b80d8
instead of to have a chained series of scope nodes. This makes
the generated table smaller, improves the efficiency of the
interpreter, and make the factoring optimization much more
reasonable to implement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97160 91177308-0d34-0410-b5e6-96231b3b80d8
splitting all the patterns under scope nodes into equality sets
based on their first node. The second step is to rewrite the
graph info a form that exposes the sharing. Before I do this,
I want to redesign the Scope node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97130 91177308-0d34-0410-b5e6-96231b3b80d8