Commit Graph

3849 Commits

Author SHA1 Message Date
Hal Finkel
f4c3a5601a [PowerPC] Implement some additional TLI callbacks
Add implementations of:
  bool isLegalICmpImmediate(int64_t Imm) const
  bool isLegalAddImmediate(int64_t Imm) const
  bool isTruncateFree(Type *Ty1, Type *Ty2) const
  bool isTruncateFree(EVT VT1, EVT VT2) const
  bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const

Unfortunately, this regresses counter-register-based loop formation because
some of the loops now end up in forms were SE cannot compute loop counts.
However, nevertheless, the test-suite results favor committing:

SingleSource/Benchmarks/BenchmarkGame/puzzle: 26% speedup
MultiSource/Benchmarks/FreeBench/analyzer/analyzer: 21% speedup
MultiSource/Benchmarks/MiBench/automotive-susan/automotive-susan: 20% speedup
SingleSource/Benchmarks/Polybench/linear-algebra/kernels/trisolv/trisolv: 19% speedup
SingleSource/Benchmarks/Polybench/linear-algebra/kernels/gesummv/gesummv: 15% speedup
MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2: 2% speedup

MultiSource/Benchmarks/VersaBench/bmm/bmm: 26% slowdown

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206120 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-12 21:52:38 +00:00
NAKAMURA Takumi
6c5bb2e764 LLVMBuild.txt: Reformat.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205961 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-10 11:16:17 +00:00
Hal Finkel
c0c10f20a2 [PowerPC] Don't return false from PPC::isVSLDOIShuffleMask
PPC::isVSLDOIShuffleMask should return -1, not false, when the shuffle
predicate should be false.

Noticed by inspection; no test case (yet).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-08 19:00:27 +00:00
Hal Finkel
d260b1ba81 [PowerPC] Remove unused TM member variable to unbreak build
Fix "error: private field 'TM' is not used [-Werror,-Wunused-private-field]"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205660 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-05 00:16:28 +00:00
Hal Finkel
e6a5b33e6e [PowerPC] Adjust load/store costs in PPCTTI
This provides more realistic costs for the insert/extractelement instructions
(which are load/store pairs), accounts for the cheap unaligned Altivec load
sequence, and for unaligned VSX load/stores.

Bad news:
MultiSource/Applications/sgefa/sgefa - 35% slowdown (this will require more investigation)
SingleSource/Benchmarks/McGill/queens - 20% slowdown (we no longer vectorize this, but it was a constant store that was scalarized)
MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2 - 2% slowdown

Good news:
SingleSource/Benchmarks/Shootout/ary3 - 54% speedup
SingleSource/Benchmarks/Shootout-C++/ary - 40% speedup
MultiSource/Benchmarks/Ptrdist/ks/ks - 35% speedup
MultiSource/Benchmarks/FreeBench/neural/neural - 30% speedup
MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt - 20% speedup

Unfortunately, estimating the costs of the stack-based scalarization sequences
is hard, and adjusting these costs is like a game of whac-a-mole :( I'll
revisit this again after we have better codegen for vector extloads and
truncstores and unaligned load/stores.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205658 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-04 23:51:18 +00:00
Hal Finkel
cef9f7ef27 [PowerPC] PPCTTI Cleanup
Remove the declaration of an unimplemented function.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205657 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-04 23:51:11 +00:00
Hal Finkel
b12c642bbf [PowerPC] Add a full condition code register to make the "cc" clobber work
gcc inline asm supports specifying "cc" as a clobber of all condition
registers. Add just enough modeling of the full register to make this work.
Fixed PR19326.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205630 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-04 15:15:57 +00:00
Craig Topper
84f7f350c3 Make consistent use of MCPhysReg instead of uint16_t throughout the tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205610 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-04 05:16:06 +00:00
Hal Finkel
1fb3df7a2e [PowerPC] Make PPCTTI::getMemoryOpCost call BasicTTI::getMemoryOpCost
PPCTTI::getMemoryOpCost will now make use of BasicTTI::getMemoryOpCost to
calculate the base cost of the memory access, and then adjust on top of that.
There is no functionality change from this modification, but it will become
important so that PPCTTI can take advantage of scalarization information for which
BasicTTI::getMemoryOpCost will account in the near future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205476 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-02 22:43:49 +00:00
Jim Grosbach
bc07242d9b Simplify resolveFrameIndex() signature.
Just pass a MachineInstr reference rather than an MBB iterator.
Creating a MachineInstr& is the first thing every implementation did
anyway.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205453 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-02 19:28:18 +00:00
Hal Finkel
4a6c0afc52 [PowerPC] Add some missing VSX bitcast patterns
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205352 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 19:24:27 +00:00
Hal Finkel
e2b3751924 [PowerPC] Don't ever expand BUILD_VECTOR of v2i64 with shuffles
If we have two unique values for a v2i64 build vector, this will always result
in two vector loads if we expand using shuffles. Only one is necessary.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205231 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-31 17:48:16 +00:00
Hal Finkel
3f784d82ff [PowerPC] Correct P7 dispatch unit allocation for vector instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205222 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-31 17:02:10 +00:00
Hal Finkel
ee8e48d4c9 [PowerPC] Handle VSX v2i64 SIGN_EXTEND_INREG
sitofp from v2i32 to v2f64 ends up generating a SIGN_EXTEND_INREG v2i64 node
(and similarly for v2i16 and v2i8). Even though there are no sign-extension (or
algebraic shifts) for v2i64 types, we can handle v2i32 sign extensions by
converting two and from v2i64. The small trick necessary here is to shift the
i32 elements into the right lanes before the i32 -> f64 step. This is because
of the big Endian nature of the system, we need the i32 portion in the high
word of the i64 elements.

For v2i16 and v2i8 we can do the same, but we first use the default Altivec
shift-based expansion from v2i16 or v2i8 to v2i32 (by casting to v4i32) and
then apply the above procedure.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205146 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-30 13:22:59 +00:00
Hal Finkel
7563821402 [PowerPC] Handle v2i64 comparisons
v2i64 is a legal type under VSX, however we don't have native vector
comparisons. We can handle eq/ne by casting it to an Altivec type, but
everything else must be expanded.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205106 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 16:04:40 +00:00
Hal Finkel
3873f8265b [PowerPC] VSX instruction latency corrections
The vector divide and sqrt instructions have high latencies, and the scalar
comparisons are like all of the others. On the P7, permutations take an extra
cycle over purely-simple vector ops.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205096 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 13:20:31 +00:00
Rafael Espindola
224dbf4aec Completely rewrite ELFObjectWriter::RecordRelocation.
I started trying to fix a small issue, but this code has seen a small fix too
many.

The old code was fairly convoluted. Some of the issues it had:

* It failed to check if a symbol difference was in the some section when
  converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
  relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
  requiring a quiet nasty work around in ARM.
* It was missing comments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205076 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 06:26:49 +00:00
Hal Finkel
44b2b9dc1a [PowerPC] Add subregister classes for f64 VSX values
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205075 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 05:29:01 +00:00
Hal Finkel
0e11c017a9 [PowerPC] Fix VSX permutation isel
Not only did I invert the indices when I wrote the code, but I also did the
same thing when I wrote the regression test. Oops.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205046 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-28 20:24:55 +00:00
Hal Finkel
c9de9e60b9 [PowerPC] v2[fi]64 need to be explicitly passed in VSX registers
v2[fi]64 values need to be explicitly passed in VSX registers. This is because
the code in TRI that finds the minimal register class given a register and a
value type will assert if given an Altivec register and a non-Altivec type.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205041 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-28 19:58:11 +00:00
Hal Finkel
e2ee98ab16 [PowerPC] Use a small cleanup pass to remove VSX self copies
As explained in r204976, because of how the allocation of VSX registers
interacts with the call-lowering code, we sometimes end up generating self VSX
copies. Specifically, things like this:
  %VSL2<def> = COPY %F2, %VSL2<imp-use,kill>
(where %F2 is really a sub-register of %VSL2, and so this copy is a nop)

This adds a small cleanup pass to remove these prior to post-RA scheduling.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204980 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 23:12:31 +00:00
Hal Finkel
be77894aef [PowerPC] Don't remove self VSX copies in PPCInstrInfo::copyPhysReg
Because of how the allocation of VSX registers interacts with the call-lowering
code, we sometimes end up generating self VSX copies. Specifically, things like
this:
  %VSL2<def> = COPY %F2, %VSL2<imp-use,kill>
(where %F2 is really a sub-register of %VSL2, and so this copy is a nop)

The problem is that ExpandPostRAPseudos always assumes that *some* instruction
has been inserted, and adds implicit defs to it. This is a problem if no copy
was inserted because it can cause subtle problems during post-RA scheduling.
These self copies will have to be removed some other way.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204976 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 22:46:28 +00:00
Hal Finkel
6bdc4ebedd [PowerPC] Fix v2f64 vector extract and related patterns
First, v2f64 vector extract had not been declared legal (and so the existing
patterns were not being used). Second, the patterns for that, and for
scalar_to_vector, should really be a regclass copy, not a subregister
operation, because the VSX registers directly hold both the vector and scalar data.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204971 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 22:22:48 +00:00
Hal Finkel
276d854549 [PowerPC] Expand v2i64 shifts
These operations need to be expanded during legalization so that isel does not
crash. In theory, we might be able to custom lower some of these. That,
however, would need to be follow-up work.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204963 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 21:26:33 +00:00
Rafael Espindola
74dcb03fa9 Remove another unused argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204961 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 20:49:35 +00:00
Rafael Espindola
0c0cd3a4ee Remove unused argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204956 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 20:41:17 +00:00
Rafael Espindola
f165cf7ce8 Prevent alias from pointing to weak aliases.
This adds back r204781.

Original message:

Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given

define void @my_func() {
  ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias

We produce without this patch:

        .weak   my_alias
my_alias = my_func
        .globl  my_alias2
my_alias2 = my_alias

That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a

@my_alias = alias void ()* @other_func

would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.

There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-27 15:26:56 +00:00
Hal Finkel
ee5f4bb6b3 [PowerPC] Generate VSX permutations for v2[fi]64 vectors
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204873 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 22:58:37 +00:00
Hal Finkel
6da0178737 [PowerPC] VSX loads and stores support unaligned access
I've not yet updated PPCTTI because I'm not sure what the actual relative cost
is compared to the aligned uses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204848 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 19:39:09 +00:00
Hal Finkel
b397453155 [PowerPC] Use v2f64 <-> v2i64 VSX conversion instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204843 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 19:13:54 +00:00
Hal Finkel
cb2c252f42 [PowerPC] Remove some dead VSX v4f32 store patterns
These patterns are dead (because v4f32 stores are currently promoted to v4i32
and stored using Altivec instructions), and also are likely not correct
(because they'd store the vector elements in the opposite order from that
assumed by the rest of the Altivec code).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204839 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 18:26:36 +00:00
Hal Finkel
c6940d4cb7 [PowerPC] Use VSX vector load/stores for v2[fi]64
These instructions have access to the complete VSX register file. In addition,
they "swap" the order of the elements so that element 0 (the scalar part) comes
first in memory and element 1 follows at a higher address.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204838 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 18:26:30 +00:00
Hal Finkel
7363d2223e [PowerPC] Add v2i64 as a legal VSX type
v2i64 needs to be a legal VSX type because it is the SetCC result type from
v2f64 comparisons. We need to expand all non-arithmetic v2i64 operations.

This fixes the lowering for v2f64 VSELECT.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204828 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 16:12:58 +00:00
Hal Finkel
159e7f4095 [PowerPC] Lower VSELECT using xxsel when VSX is available
With VSX there is a real vector select instruction, and so we should use it.
Note that VSELECT will still scalarize for v2f64 because the corresponding
SetCC result type (v2i64) is not currently a legal type.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204801 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 12:49:28 +00:00
Rafael Espindola
72db10a995 Revert "Prevent alias from pointing to weak aliases."
This reverts commit r204781.

I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 06:14:40 +00:00
Hal Finkel
360ee97179 [PowerPC] Generate logical vector VSX instructions
These instructions are essentially the same as their Altivec counterparts, but
have access to the larger VSX register file.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 04:55:40 +00:00
Rafael Espindola
33845aa8c4 Prevent alias from pointing to weak aliases.
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given

define void @my_func() {
  ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias

We produce without this patch:

        .weak   my_alias
my_alias = my_func
        .globl  my_alias2
my_alias2 = my_alias

That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a

@my_alias = alias void ()* @other_func

would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.

There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 04:48:47 +00:00
Hal Finkel
6a0f060f64 [PowerPC] Select between VSX A-type and M-type FMA instructions just before RA
The VSX instruction set has two types of FMA instructions: A-type (where the
addend is taken from the output register) and M-type (where one of the product
operands is taken from the output register). This adds a small pass that runs
just after MI scheduling (and, thus, just before register allocation) that
mutates A-type instructions (that are created during isel) into M-type
instructions when:

 1. This will eliminate an otherwise-necessary copy of the addend

 2. One of the product operands is killed by the instruction

The "right" moment to make this decision is in between scheduling and register
allocation, because only there do we know whether or not one of the product
operands is killed by any particular instruction. Unfortunately, this also
makes the implementation somewhat complicated, because the MIs are not in SSA
form and we need to preserve the LiveIntervals analysis.

As a simple example, if we have:

%vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
%vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
                        %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
  ...
  %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
                        %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
  ...

We can eliminate the copy by changing from the A-type to the
M-type instruction. This means:

  %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
                        %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16

is replaced by:

  %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
                        %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9

and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204768 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-25 23:29:21 +00:00
Hal Finkel
7e77dabbd0 [PowerPC] Correct commutable indices for VSX FMA instructions
Although the first two operands are the ones that can be swapped, the tied
input operand is listed before them, so we need to adjust for that.

I have a test case for this, but it goes along with an upcoming commit (so it
will come soon).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204748 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-25 19:26:43 +00:00
Hal Finkel
fba0a057a2 [PowerPC] Add a TableGen relation for A-type and M-type VSX FMA instructions
TableGen will create a lookup table for the A-type FMA instructions providing
their corresponding M-form opcodes. This will be used by upcoming commits.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204746 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-25 18:55:11 +00:00
Ulrich Weigand
47eac58333 [PowerPC] Generate little-endian object files
As a first step towards real little-endian code generation, this patch
changes the PowerPC MC layer to actually generate little-endian object
files.  This involves passing the little-endian flag through the various
layers, including down to createELFObjectWriter so we actually get basic
little-endian ELF objects, emitting instructions in little-endian order,
and handling fixups and relocations as appropriate for little-endian.

The bulk of the patch is to update most test cases in test/MC/PowerPC
to verify both big- and little-endian encodings.  (The only test cases
*not* updated are those that create actual big-endian ABI code, like
the TLS tests.)

Note that while the object files are now little-endian, the generated
code itself is not yet updated, in particular, it still does not adhere
to the ELFv2 ABI.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204634 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-24 18:16:09 +00:00
Will Schmidt
04c252cc93 [PPC64LE] ELFv2 ABI updates for the .opd section
[PPC64LE] ELFv2 ABI updates for the .opd section
The PPC64 Little Endian (PPC64LE) target supports the ELFv2 ABI, and as
such, does not have a ".opd" section.  This is keyed off a _CALL_ELF=2
macro check.

The CALL_ELF check is not clearly documented at this time.  The basis
for usage in this patch is from the gcc thread here:
http://gcc.gnu.org/ml/gcc-patches/2013-11/msg01144.html

> Adding comment from Uli:
Looks good to me.  I think the old-style JIT doesn't really work
anyway for 64-bit, but at least with this patch LLVM will compile
and link again on a ppc64le host ...




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204614 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-24 16:04:15 +00:00
Hal Finkel
38a80e9b21 [PowerPC] Mark many instructions as commutative
I'm under the impression that we used to infer the isCommutable flag from the
instruction-associated pattern. Regardless, we don't seem to do this (at least
by default) any more. I've gone through all of our instruction definitions, and
marked as commutative all of those that should be trivial to commute (by
exchanging the first two operands). There has been special code for the RL*
instructions, and that's not changed.

Before this change, we had the following commutative instructions:

 RLDIMI
 RLDIMIo
 RLWIMI
 RLWIMI8
 RLWIMI8o
 RLWIMIo
 XSADDDP
 XSMULDP
 XVADDDP
 XVADDSP
 XVMULDP
 XVMULSP

After:

 ADD4
 ADD4o
 ADD8
 ADD8o
 ADDC
 ADDC8
 ADDC8o
 ADDCo
 ADDE
 ADDE8
 ADDE8o
 ADDEo
 AND
 AND8
 AND8o
 ANDo
 CRAND
 CREQV
 CRNAND
 CRNOR
 CROR
 CRXOR
 EQV
 EQV8
 EQV8o
 EQVo
 FADD
 FADDS
 FADDSo
 FADDo
 FMADD
 FMADDS
 FMADDSo
 FMADDo
 FMSUB
 FMSUBS
 FMSUBSo
 FMSUBo
 FMUL
 FMULS
 FMULSo
 FMULo
 FNMADD
 FNMADDS
 FNMADDSo
 FNMADDo
 FNMSUB
 FNMSUBS
 FNMSUBSo
 FNMSUBo
 MULHD
 MULHDU
 MULHDUo
 MULHDo
 MULHW
 MULHWU
 MULHWUo
 MULHWo
 MULLD
 MULLDo
 MULLW
 MULLWo
 NAND
 NAND8
 NAND8o
 NANDo
 NOR
 NOR8
 NOR8o
 NORo
 OR
 OR8
 OR8o
 ORo
 RLDIMI
 RLDIMIo
 RLWIMI
 RLWIMI8
 RLWIMI8o
 RLWIMIo
 VADDCUW
 VADDFP
 VADDSBS
 VADDSHS
 VADDSWS
 VADDUBM
 VADDUBS
 VADDUHM
 VADDUHS
 VADDUWM
 VADDUWS
 VAND
 VAVGSB
 VAVGSH
 VAVGSW
 VAVGUB
 VAVGUH
 VAVGUW
 VMADDFP
 VMAXFP
 VMAXSB
 VMAXSH
 VMAXSW
 VMAXUB
 VMAXUH
 VMAXUW
 VMHADDSHS
 VMHRADDSHS
 VMINFP
 VMINSB
 VMINSH
 VMINSW
 VMINUB
 VMINUH
 VMINUW
 VMLADDUHM
 VMULESB
 VMULESH
 VMULEUB
 VMULEUH
 VMULOSB
 VMULOSH
 VMULOUB
 VMULOUH
 VNMSUBFP
 VOR
 VXOR
 XOR
 XOR8
 XOR8o
 XORo
 XSADDDP
 XSMADDADP
 XSMAXDP
 XSMINDP
 XSMSUBADP
 XSMULDP
 XSNMADDADP
 XSNMSUBADP
 XVADDDP
 XVADDSP
 XVMADDADP
 XVMADDASP
 XVMAXDP
 XVMAXSP
 XVMINDP
 XVMINSP
 XVMSUBADP
 XVMSUBASP
 XVMULDP
 XVMULSP
 XVNMADDADP
 XVNMADDASP
 XVNMSUBADP
 XVNMSUBASP
 XXLAND
 XXLNOR
 XXLOR
 XXLXOR

This is a by-inspection change, and I'm not sure how to write a reliable test
case. I would like advice on this, however.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204609 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-24 15:07:28 +00:00
Hal Finkel
2393d22ca4 [PowerPC] Don't schedule VSX copy legalization unless VSX is enabled
There is no need to schedule this extra pass if it will have nothing to do.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204594 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-24 09:51:41 +00:00
Hal Finkel
72448143b5 [PowerPC] Update comment re: VSX copy-instruction selection
I've done some experimentation with this, and it looks like using the
lower-latency (but lower throughput) copy instruction is essentially always the
right thing to do.

My assumption is that, in order to be relatively sure that the higher-latency
copy will increase throughput, we'd want to have it unlikely to be in-flight
with its use. On the P7, the global completion table (GCT) can hold a maximum
of 120 instructions, shared among all active threads (up to 4), giving 30
instructions per thread.  So specifically, I'd require at least that many
instructions between the copy and the use before the high-latency variant is
used.

Trying this, however, over the entire test suite resulted in zero cases where
the high-latency form would be preferable. This may be a consequence of the
fact that the scheduler views copies as free, and so they tend to end up close
to their uses. For this experiment I created a function:

  unsigned chooseVSXCopy(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator I,
                         unsigned DestReg, unsigned SrcReg,
                         unsigned StartDist = 1,
                         unsigned Depth = 3) const;

with an implementation like:

  if (!Depth)
    return PPC::XXLOR;

  const unsigned MaxDist = 30;
  unsigned Dist = StartDist;
  for (auto J = I, JE = MBB.end(); J != JE && Dist <= MaxDist; ++J) {
    if (J->isTransient() && !J->isCopy())
      continue;

    if (J->isCall() || J->isReturn() || J->readsRegister(DestReg, TRI))
      return PPC::XXLOR;

    ++Dist;
  }

  // We've exceeded the required distance for the high-latency form, use it.
  if (Dist > MaxDist)
    return PPC::XVCPSGNDP;

  // If this is only an exit block, use the low-latency form.
  if (MBB.succ_empty())
    return PPC::XXLOR;

  // We've reached the end of the block, check the successor blocks (up to some
  // depth), and use the high-latency form if that is okay with all successors.
  for (auto J = MBB.succ_begin(), JE = MBB.succ_end(); J != JE; ++J) {
    if (chooseVSXCopy(**J, (*J)->begin(), DestReg, SrcReg,
                      Dist, --Depth) == PPC::XXLOR)
      return PPC::XXLOR;
  }

  // All of our successor blocks seem okay with the high-latency variant, so
  // we'll use it.
  return PPC::XVCPSGNDP;

and then changed the copy opcode selection from:
    Opc = PPC::XXLOR;
to:
    Opc = chooseVSXCopy(MBB, std::next(I), DestReg, SrcReg);

In conclusion, I'm removing the FIXME from the comment, because I believe that
there is, at least absent other examples, nothing to fix.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204591 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-24 09:36:36 +00:00
Nuno Lopes
2ca626570f remove a bunch of unused private methods
found with a smarter version of -Wunused-member-function that I'm playwing with.
Appologies in advance if I removed someone's WIP code.

 include/llvm/CodeGen/MachineSSAUpdater.h            |    1 
 include/llvm/IR/DebugInfo.h                         |    3 
 lib/CodeGen/MachineSSAUpdater.cpp                   |   10 --
 lib/CodeGen/PostRASchedulerList.cpp                 |    1 
 lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp    |   10 --
 lib/IR/DebugInfo.cpp                                |   12 --
 lib/MC/MCAsmStreamer.cpp                            |    2 
 lib/Support/YAMLParser.cpp                          |   39 ---------
 lib/TableGen/TGParser.cpp                           |   16 ---
 lib/TableGen/TGParser.h                             |    1 
 lib/Target/AArch64/AArch64TargetTransformInfo.cpp   |    9 --
 lib/Target/ARM/ARMCodeEmitter.cpp                   |   12 --
 lib/Target/ARM/ARMFastISel.cpp                      |   84 --------------------
 lib/Target/Mips/MipsCodeEmitter.cpp                 |   11 --
 lib/Target/Mips/MipsConstantIslandPass.cpp          |   12 --
 lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp              |   21 -----
 lib/Target/NVPTX/NVPTXISelDAGToDAG.h                |    2 
 lib/Target/PowerPC/PPCFastISel.cpp                  |    1 
 lib/Transforms/Instrumentation/AddressSanitizer.cpp |    2 
 lib/Transforms/Instrumentation/BoundsChecking.cpp   |    2 
 lib/Transforms/Instrumentation/MemorySanitizer.cpp  |    1 
 lib/Transforms/Scalar/LoopIdiomRecognize.cpp        |    8 -
 lib/Transforms/Scalar/SCCP.cpp                      |    1 
 utils/TableGen/CodeEmitterGen.cpp                   |    2 
 24 files changed, 2 insertions(+), 261 deletions(-)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204560 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-23 17:09:26 +00:00
Hal Finkel
b6cbecd272 [PowerPC] Make use of VSX f64 <-> i64 conversion instructions
When VSX is available, these instructions should be used in preference to the
older variants that only have access to the scalar floating-point registers.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204559 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-23 05:35:00 +00:00
Hal Finkel
0d277ab1ba [PowerPC] Fix the VSX v2f64 return register
v2f64 values, like other 128-bit values, are returned under VSX in register
vs34 (Altivec register v2).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204543 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-22 18:24:43 +00:00
Alexey Samsonov
471e0ba850 Add llvm_unreachable after fully-covered switches to appease GCC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204318 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-20 07:30:40 +00:00
Rafael Espindola
0a70f9b3b9 Look through variables when computing relocations.
Given

bar = foo + 4
	.long bar

MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.

Fixing this unfortunately required some other changes:

* Since the variable is now evaluated, it would prevent the ELF writer from
  noticing the weakref marker the elf streamer uses. This patch then replaces
  that with a VariantKind in MCSymbolRefExpr.

* Using VariantKind then requires us to look past other VariantKind to see

	.weakref	bar,foo
	call	bar@PLT

  doing this also fixes

	zed = foo +2
	call zed@PLT

  so that is a good thing.

* Looking past VariantKind means that the relocation selection has to use
  the fixup instead of the target.

This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204294 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-20 02:12:01 +00:00