unwind encoding for that function. This simply crawls through the prolog looking
for machine instrs marked as "frame setup". It can calculate from these what the
compact unwind should look like.
This is currently disabled because of needed linker support. But initial tests
look good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135922 91177308-0d34-0410-b5e6-96231b3b80d8
The .local, .hidden, .internal, and .protected are not legal for all supported
file formats (in particular, they're invalid for MachO). Move the parsing for
them into the ELF assembly parser since that's the format they're for.
Similarly, .weak is used by COFF and ELF, but not MachO, so move the parsing
to the COFF and ELF asm parsers. Previously, using any of these directives
on Darwin would result in an assertion failure in the parser; now we get
a diagnostic as we should.
rdar://9827089
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135921 91177308-0d34-0410-b5e6-96231b3b80d8
This mechanism already exists, but the RS_Split2 stage makes it clearer.
When live range splitting creates ranges that may not be making
progress, they are marked RS_Split2 instead of RS_New. These ranges may
be split again, but only in a way that can be proven to make progress.
For local ranges, that means they must be split into ranges used by
strictly fewer instructions.
For global ranges, region splitting is bypassed and the RS_Split2
ranges go straight to per-block splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135912 91177308-0d34-0410-b5e6-96231b3b80d8
The stage is used to control where a live range is going, not where it
is coming from. Live ranges created by splitting will usually be marked
RS_New, but some are marked RS_Spill to avoid wasting time trying to
split them again.
The old RS_Global and RS_Local stages are merged - they are really the
same thing for local and global live ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135911 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR10463. A two-address instruction with an <undef> use
operand was incorrectly rewritten so the def and use no longer used the
same register, violating the tie constraint.
Fix this by always rewriting <undef> operands with the register a def
operand would use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135885 91177308-0d34-0410-b5e6-96231b3b80d8
This method computes the edge bundles that should be live when splitting
around a compact region. This is independent of interference.
The function returns false if the live range was already a compact
region, or the compact region doesn't have any live bundles - it would
be the same as splitting around basic blocks.
Compact regions are computed using the normal spill placement code. We
pretend there is interference in all live-through blocks that don't use
the live range. This removes all edges from the Hopfield network used
for spill placement, so it converges instantly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135847 91177308-0d34-0410-b5e6-96231b3b80d8
If there is no interference and no last split point, we cannot
enterIntvBefore(Stop) - that function needs a real instruction.
Use enterIntvAtEnd instead for that very easy case.
This code doesn't currently run, it is needed by multi-way splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135846 91177308-0d34-0410-b5e6-96231b3b80d8
A split candidate can have a null PhysReg which means that it doesn't
map to a real interference pattern. Instead, pretend that all through
blocks have interference.
This makes it possible to generate compact regions where the live range
doesn't go through blocks that don't use it. The live range will still
be live between directly connected blocks with uses.
Splitting around a compact region tends to produce a live range with a
high spill weight, so it may evict a less dense live range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135845 91177308-0d34-0410-b5e6-96231b3b80d8
This method matches addLinks - All the listed blocks are considered to
have interference, so they add a negative bias to their bundles.
This could also be done by addConstraints, but that requires building a
separate BlockConstraint array.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135844 91177308-0d34-0410-b5e6-96231b3b80d8
This makes TargetRegisterClass slightly slower. Next step will be making contains faster.
Eventually TargetRegisterClass will be killed entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135835 91177308-0d34-0410-b5e6-96231b3b80d8
The immediate is in the range 1-32, but is encoded as 0-31 in a 5-bit bitfield.
Update the representation such that we store the operand as 0-31, allowing us
to remove the encoder method and the special case handling in the disassembler.
Update the assembly parser and the instruction printer accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135823 91177308-0d34-0410-b5e6-96231b3b80d8
so that a declaration for objc_retain is created when needed if it doesn't
already exist. rdar://9825114.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135821 91177308-0d34-0410-b5e6-96231b3b80d8