This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.
Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.
The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.
This is a work in progress and still not hooked up to RegAllocGreedy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122938 91177308-0d34-0410-b5e6-96231b3b80d8
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122832 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122113 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristics split around the largest loop where the current register may be
allocated without interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122106 91177308-0d34-0410-b5e6-96231b3b80d8
This is a three-way interval list intersection between a virtual register, a
live interval union, and a loop. It will be used to identify interference-free
loops for live range splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122034 91177308-0d34-0410-b5e6-96231b3b80d8
A MachineLoopRange contains the intervals of slot indexes covered by the blocks
in a loop. This representation of the loop blocks is more efficient to compare
against interfering registers during register coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121917 91177308-0d34-0410-b5e6-96231b3b80d8
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121274 91177308-0d34-0410-b5e6-96231b3b80d8
This new register allocator is initially identical to RegAllocBasic, but it will
receive all of the tricks that RegAllocBasic won't get.
RegAllocGreedy will eventually replace linear scan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121234 91177308-0d34-0410-b5e6-96231b3b80d8
Scan the MachineFunction for DBG_VALUE instructions, and replace them with a
data structure similar to LiveIntervals. The live range of a DBG_VALUE is
determined by propagating it down the dominator tree until a new DBG_VALUE is
found. When a DBG_VALUE lives in a register, its live range is confined to the
live range of the register's value.
LiveDebugVariables runs before coalescing, so DBG_VALUEs are not artificially
extended when registers are joined.
The missing half will recreate DBG_VALUE instructions from the intervals when
register allocation is complete.
The pass is disabled by default. It can be enabled with the temporary command
line option -live-debug-variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120636 91177308-0d34-0410-b5e6-96231b3b80d8
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120501 91177308-0d34-0410-b5e6-96231b3b80d8
so don't claim they are. They are allocated using DAG.getNode, so attempts
to access MemSDNode fields results in reading off the end of the allocated
memory. This fixes crashes with "llc -debug" due to debug code trying to
print MemSDNode fields for these barrier nodes (since the crashes are not
deterministic, use valgrind to see this). Add some nasty checking to try
to catch this kind of thing in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119901 91177308-0d34-0410-b5e6-96231b3b80d8
easier to debug, and to avoid complications when the CFG changes
in the middle of the instruction selection process.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119382 91177308-0d34-0410-b5e6-96231b3b80d8
since it is trivial and will be shared between ppc and x86.
This substantially simplifies the X86 backend also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119089 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first small step towards using closed intervals for liveness instead
of the half-open intervals we're using now.
We want to be able to distinguish between a SlotIndex that represents a variable
being live-out of a basic block, and an index representing a variable live-in to
its successor.
That requires two separate indexes between blocks. One for live-outs and one for
live-ins.
With this change, getMBBEndIdx(MBB).getPrevSlot() becomes stable so it stays
greater than any instructions inserted at the end of MBB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118747 91177308-0d34-0410-b5e6-96231b3b80d8
benchmarks hitting an assertion.
Adds LiveIntervalUnion::collectInterferingVRegs.
Fixes "late spilling" by checking for any unspillable live vregs among
all physReg aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118701 91177308-0d34-0410-b5e6-96231b3b80d8
and as such can be represented by an MVT - the more complicated
EVT is not needed. Use MVT for ValVT everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118245 91177308-0d34-0410-b5e6-96231b3b80d8
with a SimpleValueType, while an EVT supports equality and
inequality comparisons with SimpleValueType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118169 91177308-0d34-0410-b5e6-96231b3b80d8
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118167 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8