Also check in a case to repeat the issue, on which 'opt -globalopt' consumes 1.6GB memory.
The big memory footprint cause is that current GlobalOpt one by one hoists and stores the leaf element constant into the global array, in each iteration, it recreates the global array initializer constant and leave the old initializer alone. This may result in many obsolete constants left.
For example: we have global array @rom = global [16 x i32] zeroinitializer
After the first element value is hoisted and installed: @rom = global [16 x i32] [ 1, 0, 0, ... ]
After the second element value is installed: @rom = global [16 x 32] [ 1, 2, 0, 0, ... ] // here the previous initializer is obsolete
...
When the transform is done, we have 15 obsolete initializers left useless.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169079 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-30-misched-dbg.ll had crashed. Then (MDNode)N was "!{}".
I am not sure it would be ill-formed or not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169074 91177308-0d34-0410-b5e6-96231b3b80d8
- Each macro instantiation introduces a new buffer, and FindBufferForLoc() is
linear, so previously macro instantiation could be N^2 for some pathological
inputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169073 91177308-0d34-0410-b5e6-96231b3b80d8
The TwoAddressInstructionPass takes the machine code out of SSA form by
expanding REG_SEQUENCE instructions into copies. It is no longer
necessary to rewrite the registers used by a REG_SEQUENCE instruction
because the new coalescer algorithm can do it now.
REG_SEQUENCE is just converted to a sequence of sub-register copies now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169067 91177308-0d34-0410-b5e6-96231b3b80d8
part of the compile unit CU and start separating out information into
the various sections that will be pulled out later.
WIP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169061 91177308-0d34-0410-b5e6-96231b3b80d8
MachineCopyPropagation doesn't understand super-register liveness well
enough to be able to remove implicit defs of super-registers.
This fixes a problem in ARM/2012-01-26-CopyPropKills.ll that is exposed
by an future TwoAddressInstructionPass change. The KILL instructions are
removed before the machine code is emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169060 91177308-0d34-0410-b5e6-96231b3b80d8
uses. APFloat::convert() takes the pointer to the fltSemantics
variable, which is later accessed it in ~APFloat() desctructor.
That is, semantics must still be alive at the moment we delete
APFloat.
Found by experimental AddressSanitizer use-after-scope checker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169047 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169044 91177308-0d34-0410-b5e6-96231b3b80d8
This causes llc to repeat the module compilation N times, making it
possible to get more accurate information from -time-passes when
compiling small modules.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169040 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids unidentified duplicates in the pass execution time report
when a pass runs more than once in the pass manager pipeline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169039 91177308-0d34-0410-b5e6-96231b3b80d8
Codegen was failing with an assertion because of unexpected vector
operands when legalizing the selection DAG for a MUL instruction.
The asserting code was legalizing multiplies for vectors of size 128
bits. It uses a custom lowering to try and detect cases where it can
use a VMULL instruction instead of a VMOVL + VMUL. The code was
looking for input operands to the MUL that had been sign or zero
extended. If it found the extended operands it would drop the
sign/zero extension and use the original vector size as input to a
VMULL instruction.
The code assumed that the original input vector was 64 bits so that
after dropping the extension it would fit directly into a D register
and could be used as an operand of a VMULL instruction. The input
code that trigger the failure used a vector of <4 x i8> that was
sign extended to <4 x i32>. It was not safe to drop the sign
extension in this case because the original vector is only 32 bits
wide. The fix is to insert a sign extension for the vector to reach
the required 64 bit size. In this particular example, the vector would
need to be sign extented to a <4 x i16>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169024 91177308-0d34-0410-b5e6-96231b3b80d8
instruction (vmaddfp) to conform with IEEE to ensure the sign of a zero
result when resulting product is -0.0.
The -0.0 vector addend to vmaddfp is generated by a creating a vector
with full bits sets and then shifting each elements by 31-bits to the
left, resulting in a vector of 0x80000000 (or -0.0 as float).
The 'buildvec_canonicalize.ll' was adjusted to reflect this change and
the 'vec_mul.ll' was complemented with the float vector multiplication
test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168998 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168996 91177308-0d34-0410-b5e6-96231b3b80d8
references from whether it supports an R-value reference *this. No
version of GCC today supports the latter, which breaks GCC C++11
compiles of LLVM and Clang now.
Also add doxygen comments clarifying what's going on here, and update
the usage in Optional. I'll update the usages in Clang next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168993 91177308-0d34-0410-b5e6-96231b3b80d8
For example, don't allow empty strings to be passed to getInt.
Move asserts inside parseSpecifier. (One day we may want to pass parse
error messages to the user - from LLParser - instead of using asserts,
but keep the code simple until then. There have been an attempt to do
this. See r142288, which got reverted, and r142605.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168991 91177308-0d34-0410-b5e6-96231b3b80d8
We're iterating over a non-deterministically ordered container looking
for two saturating flags. To do this correctly, we have to saturate
both, and only stop looping if both saturate to their final value.
Otherwise, which flag we see first changes the result.
This is also a micro-optimization of the previous version as now we
don't go into the (possibly expensive) test logic once the first
violation of either constraint is detected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168989 91177308-0d34-0410-b5e6-96231b3b80d8
functionality changed.
Evan's commit r168970 moved the code that the primary comment in this
function referred to to the other end of the function without moving the
comment, and there has been a steady creep of "boolean" logic in it that
is simpler if handled via early exit. That way each special case can
have its own comments. I've also made the variable name a bit more
explanatory than "AllFit". This is in preparation to fix the
non-deterministic output of this function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168988 91177308-0d34-0410-b5e6-96231b3b80d8