into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
AKA: Recompile *ALL* the source code!
This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
where some fact lake a=b dominates a use in a phi, but doesn't dominate the
basic block itself.
This feature could also be implemented by splitting critical edges, but at least
with the current algorithm reasoning about the dominance directly is faster.
The time for running "opt -O2" in the testcase in pr10584 is 1.003 times slower
and on gcc as a single file it is 1.0007 times faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162023 91177308-0d34-0410-b5e6-96231b3b80d8
a use or a BB, but it is inline in the handling of the invoke instruction.
This patch refactors it so that it can be used in other cases. For example, in
define i32 @f(i32 %x) {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb2, label %bb1
bb1:
br label %bb2
bb2:
%cond = phi i32 [ %x, %bb0 ], [ 0, %bb1 ]
%foo = add i32 %cond, %x
ret i32 %foo
}
GVN should be able to replace %x with 0 in any use that is dominated by the
true edge out of bb0. In the above example the only such use is the one in
the phi.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161429 91177308-0d34-0410-b5e6-96231b3b80d8
There is a pretty staggering amount of this in LLVM's header files, this
is not all of the instances I'm afraid. These include all of the
functions that (in my build) are used by a non-static inline (or
external) function. Specifically, these issues were caught by the new
'-Winternal-linkage-in-inline' warning.
I'll try to just clean up the remainder of the clearly redundant "static
inline" cases on functions (not methods!) defined within headers if
I can do so in a reliable way.
There were even several cases of a missing 'inline' altogether, or my
personal favorite "static bool inline". Go figure. ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158800 91177308-0d34-0410-b5e6-96231b3b80d8
directly instead of a user Instruction. This allows them to test
whether a def dominates a particular operand if the user instruction
is a PHI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154631 91177308-0d34-0410-b5e6-96231b3b80d8
verifier does. This correctly handles invoke.
Thanks to Duncan, Andrew and Chris for the comments.
Thanks to Joerg for the early testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151469 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
Using DenseMap iterators isn't free as they have to check for empty
buckets. Dominator queries are common so this gives a minor speedup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147544 91177308-0d34-0410-b5e6-96231b3b80d8
This is a patch by Guoping Long!
As part of utilizing LLVM Dominator computation in Clang, made two changes to LLVM dominators tree implementation:
- (1) Change the recalculate() template function to only rely on GraphTraits.
- (2) Add a size() method to GraphTraits template class to query the number of nodes in the graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145837 91177308-0d34-0410-b5e6-96231b3b80d8
computation, the Ancestor field is always set to the Parent, so we can remove
the explicit link entirely and merge the Parent and Ancestor fields. Instead of
checking for whether an ancestor exists for a node or not, we simply check
whether the node has already been processed. This is simpler if Compress is
inlined into Eval, so I did that as well.
This is about a 3% speedup running -domtree on test-suite + SPEC2000 & SPEC2006,
but it also opens up some opportunities for further improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124061 91177308-0d34-0410-b5e6-96231b3b80d8
naively implemented, the Lengauer-Tarjan algorithm requires a separate bucket
for each vertex. However, this is unnecessary, because each vertex is only
placed into a single bucket (that of its semidominator), and each vertex's
bucket is processed before it is added to any bucket itself.
Instead of using a bucket per vertex, we use a single array Buckets that has two
purposes. Before the vertex V with DFS number i is processed, Buckets[i] stores
the index of the first element in V's bucket. After V's bucket is processed,
Buckets[i] stores the index of the next element in the bucket to which V now
belongs, if any.
Reading from the buckets can also be optimized. Instead of processing the bucket
of V's parent at the end of processing V, we process the bucket of V itself at
the beginning of processing V. This means that the case of the root vertex can
be simplified somewhat. It also means that we don't need to look up the DFS
number of the semidominator of every node in the bucket we are processing,
since we know it is the current index being processed.
This is a 6.5% speedup running -domtree on test-suite + SPEC2000/2006, with
larger speedups of around 12% on the larger benchmarks like GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122680 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
Compare the dominance information calculated using a dominance tree walk to the
information calculated based on DFS numbers, if XDEBUG is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92969 91177308-0d34-0410-b5e6-96231b3b80d8
Remove a FIXME and unify code that was necessary to work around broken
updateDFSNumbers(). Before updateDFSNumbers() did not work correctly for post
dominators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92968 91177308-0d34-0410-b5e6-96231b3b80d8
The DFS number calculation for postdominators was broken. In the case of
multiple exits that form the post dominator root nodes, do not iterate over
all exits, but start from the virtual root node. Otherwise bbs, that are not
post dominated by any exit but by the virtual root node, will never be assigned
a DFS number.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92967 91177308-0d34-0410-b5e6-96231b3b80d8