Eli Bendersky 76463fdeb6 Split the lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h header to smaller logical headers.
ELF and MachO implementations of RuntimeDyldImpl go into their own header files now.

Reviewed on llvm-commits



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148652 91177308-0d34-0410-b5e6-96231b3b80d8
2012-01-22 07:05:02 +00:00

314 lines
11 KiB
C++

//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
namespace {
// FIXME: this function should probably not live here...
//
// Returns the name and address of an unrelocated symbol in an ELF section
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
//FIXME: error checking here required to catch corrupt ELF objects...
error_code Err = Sym->getName(Name);
uint64_t AddrInSection;
Err = Sym->getAddress(AddrInSection);
SectionRef empty_section;
section_iterator Section(empty_section);
Err = Sym->getSection(Section);
StringRef SectionContents;
Section->getContents(SectionContents);
Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
}
}
bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
if (!isCompatibleFormat(InputBuffer))
return true;
OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
Arch = Obj->getArch();
// Map address in the Object file image to function names
IntervalMap<uint64_t, StringRef>::Allocator A;
IntervalMap<uint64_t, StringRef> FuncMap(A);
// This is a bit of a hack. The ObjectFile we've just loaded reports
// section addresses as 0 and doesn't provide access to the section
// offset (from which we could calculate the address. Instead,
// we're storing the address when it comes up in the ST_Debug case
// below.
//
StringMap<uint64_t> DebugSymbolMap;
symbol_iterator SymEnd = Obj->end_symbols();
error_code Err;
for (symbol_iterator Sym = Obj->begin_symbols();
Sym != SymEnd; Sym.increment(Err)) {
SymbolRef::Type Type;
Sym->getType(Type);
if (Type == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
uint64_t Size;
Err = Sym->getSize(Size);
uint8_t *Start;
uint8_t *End;
Start = reinterpret_cast<uint8_t*>(Addr);
End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
extractFunction(Name, Start, End);
FuncMap.insert(Addr, Addr + Size - 1, Name);
} else if (Type == SymbolRef::ST_Debug) {
// This case helps us find section addresses
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
DebugSymbolMap[Name] = Addr;
}
}
// Iterate through the relocations for this object
section_iterator SecEnd = Obj->end_sections();
for (section_iterator Sec = Obj->begin_sections();
Sec != SecEnd; Sec.increment(Err)) {
StringRef SecName;
uint64_t SecAddr;
Sec->getName(SecName);
// Ignore sections that aren't in our map
if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
continue;
}
SecAddr = DebugSymbolMap[SecName];
relocation_iterator RelEnd = Sec->end_relocations();
for (relocation_iterator Rel = Sec->begin_relocations();
Rel != RelEnd; Rel.increment(Err)) {
uint64_t RelOffset;
uint64_t RelType;
int64_t RelAddend;
SymbolRef RelSym;
StringRef SymName;
uint64_t SymAddr;
uint64_t SymOffset;
Rel->getAddress(RelOffset);
Rel->getType(RelType);
Rel->getAdditionalInfo(RelAddend);
Rel->getSymbol(RelSym);
RelSym.getName(SymName);
RelSym.getAddress(SymAddr);
RelSym.getFileOffset(SymOffset);
// If this relocation is inside a function, we want to store the
// function name and a function-relative offset
IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
= FuncMap.find(SecAddr + RelOffset);
if (ContainingFunc.valid()) {
// Re-base the relocation to make it relative to the target function
RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
RelOffset,
RelType,
RelAddend,
true));
} else {
Relocations[SymName].push_back(RelocationEntry(SecName,
RelOffset,
RelType,
RelAddend,
false));
}
}
}
return false;
}
void RuntimeDyldELF::resolveRelocations() {
// FIXME: deprecated. should be changed to use the by-section
// allocation and relocation scheme.
// Just iterate over the symbols in our symbol table and assign their
// addresses.
StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
StringMap<SymbolLoc>::iterator e = SymbolTable.end();
for (;i != e; ++i) {
assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
reassignSymbolAddress(i->getKey(),
(uint8_t*)Sections[i->getValue().first].base());
}
}
void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
assert(0 && ("Non-function relocation not implemented yet!"));
}
switch (RE.Type) {
default:
assert(0 && ("Relocation type not implemented yet!"));
break;
case ELF::R_X86_64_64: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
// FIXME: Handle the possibility of this assertion failing
assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
(RE.Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint64_t RealOffset = *Placeholder +
reinterpret_cast<uint64_t>(Addr) +
RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
assert((RealOffset & 0xFFFFFFFF) == RealOffset);
uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
assert(0 && ("Non-function relocation not implemented yet!"));
}
switch (RE.Type) {
case ELF::R_386_32: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_386_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
*Placeholder = RealOffset;
break;
}
default:
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
assert(0 && ("Relocation type not implemented yet!"));
break;
}
}
void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
}
void RuntimeDyldELF::resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(Name, Addr, RE);
break;
case Triple::x86:
resolveX86Relocation(Name, Addr, RE);
break;
case Triple::arm:
resolveArmRelocation(Name, Addr, RE);
break;
default:
assert(0 && "Unsupported CPU type!");
break;
}
}
void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
// FIXME: deprecated. switch to reassignSectionAddress() instead.
//
// Actually moving the symbol address requires by-section mapping.
assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
"Unable to relocate section in by-function JIT allocation model!");
RelocationList &Relocs = Relocations[Name];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
resolveRelocation(Name, Addr, RE);
}
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
assert(0);
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm