llvm-6502/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp
Misha Brukman 6fe6905df2 Do not hastily change the Opcode from 'r' to 'i' type if we're not actually
SETTING the operand to be an immediate or have verified that one of the operands
is really a SignExtended or Unextended immediate value already, which warrants
an 'i' opcode.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6662 91177308-0d34-0410-b5e6-96231b3b80d8
2003-06-07 02:34:43 +00:00

285 lines
11 KiB
C++

//===-- InstrSelectionSupport.cpp -----------------------------------------===//
//
// Target-independent instruction selection code. See SparcInstrSelection.cpp
// for usage.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "../../Target/Sparc/SparcInstrSelectionSupport.h"
using std::vector;
//*************************** Local Functions ******************************/
// Generate code to load the constant into a TmpInstruction (virtual reg) and
// returns the virtual register.
//
static TmpInstruction*
InsertCodeToLoadConstant(Function *F,
Value* opValue,
Instruction* vmInstr,
vector<MachineInstr*>& loadConstVec,
TargetMachine& target)
{
// Create a tmp virtual register to hold the constant.
MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
loadConstVec, mcfi);
// Record the mapping from the tmp VM instruction to machine instruction.
// Do this for all machine instructions that were not mapped to any
// other temp values created by
// tmpReg->addMachineInstruction(loadConstVec.back());
return tmpReg;
}
MachineOperand::MachineOperandType
ChooseRegOrImmed(int64_t intValue,
bool isSigned,
MachineOpCode opCode,
const TargetMachine& target,
bool canUseImmed,
unsigned int& getMachineRegNum,
int64_t& getImmedValue)
{
MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
getMachineRegNum = 0;
getImmedValue = 0;
if (canUseImmed &&
target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
{
opType = isSigned? MachineOperand::MO_SignExtendedImmed
: MachineOperand::MO_UnextendedImmed;
getImmedValue = intValue;
}
else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
{
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.getRegInfo().getZeroRegNum();
}
return opType;
}
MachineOperand::MachineOperandType
ChooseRegOrImmed(Value* val,
MachineOpCode opCode,
const TargetMachine& target,
bool canUseImmed,
unsigned int& getMachineRegNum,
int64_t& getImmedValue)
{
getMachineRegNum = 0;
getImmedValue = 0;
// To use reg or immed, constant needs to be integer, bool, or a NULL pointer
Constant *CPV = dyn_cast<Constant>(val);
if (CPV == NULL ||
(! CPV->getType()->isIntegral() &&
! (isa<PointerType>(CPV->getType()) && CPV->isNullValue())))
return MachineOperand::MO_VirtualRegister;
// Now get the constant value and check if it fits in the IMMED field.
// Take advantage of the fact that the max unsigned value will rarely
// fit into any IMMED field and ignore that case (i.e., cast smaller
// unsigned constants to signed).
//
int64_t intValue;
if (isa<PointerType>(CPV->getType()))
intValue = 0; // We checked above that it is NULL
else if (ConstantBool* CB = dyn_cast<ConstantBool>(CPV))
intValue = (int64_t) CB->getValue();
else if (CPV->getType()->isSigned())
intValue = cast<ConstantSInt>(CPV)->getValue();
else
{ // get the int value and sign-extend if original was less than 64 bits
intValue = (int64_t) cast<ConstantUInt>(CPV)->getValue();
switch(CPV->getType()->getPrimitiveID())
{
case Type::UByteTyID: intValue = (int64_t) (int8_t) intValue; break;
case Type::UShortTyID: intValue = (int64_t) (short) intValue; break;
case Type::UIntTyID: intValue = (int64_t) (int) intValue; break;
default: break;
}
}
return ChooseRegOrImmed(intValue, CPV->getType()->isSigned(),
opCode, target, canUseImmed,
getMachineRegNum, getImmedValue);
}
//---------------------------------------------------------------------------
// Function: FixConstantOperandsForInstr
//
// Purpose:
// Special handling for constant operands of a machine instruction
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else create instructions to put the constant into a register, either
// directly or by loading explicitly from the constant pool.
//
// In the first 2 cases, the operand of `minstr' is modified in place.
// Returns a vector of machine instructions generated for operands that
// fall under case 3; these must be inserted before `minstr'.
//---------------------------------------------------------------------------
vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr,
MachineInstr* minstr,
TargetMachine& target)
{
vector<MachineInstr*> MVec;
MachineOpCode opCode = minstr->getOpCode();
const TargetInstrInfo& instrInfo = target.getInstrInfo();
int resultPos = instrInfo.getResultPos(opCode);
int immedPos = instrInfo.getImmedConstantPos(opCode);
Function *F = vmInstr->getParent()->getParent();
for (unsigned op=0; op < minstr->getNumOperands(); op++)
{
const MachineOperand& mop = minstr->getOperand(op);
// Skip the result position, preallocated machine registers, or operands
// that cannot be constants (CC regs or PC-relative displacements)
if (resultPos == (int)op ||
mop.getType() == MachineOperand::MO_MachineRegister ||
mop.getType() == MachineOperand::MO_CCRegister ||
mop.getType() == MachineOperand::MO_PCRelativeDisp)
continue;
bool constantThatMustBeLoaded = false;
unsigned int machineRegNum = 0;
int64_t immedValue = 0;
Value* opValue = NULL;
MachineOperand::MachineOperandType opType =
MachineOperand::MO_VirtualRegister;
// Operand may be a virtual register or a compile-time constant
if (mop.getType() == MachineOperand::MO_VirtualRegister)
{
assert(mop.getVRegValue() != NULL);
opValue = mop.getVRegValue();
if (Constant *opConst = dyn_cast<Constant>(opValue)) {
opType = ChooseRegOrImmed(opConst, opCode, target,
(immedPos == (int)op), machineRegNum,
immedValue);
if (opType == MachineOperand::MO_VirtualRegister)
constantThatMustBeLoaded = true;
}
}
else
{
assert(mop.isImmediate());
bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
// Bit-selection flags indicate an instruction that is extracting
// bits from its operand so ignore this even if it is a big constant.
if (mop.opHiBits32() || mop.opLoBits32() ||
mop.opHiBits64() || mop.opLoBits64())
continue;
opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
opCode, target, (immedPos == (int)op),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_SignExtendedImmed ||
opType == MachineOperand::MO_UnextendedImmed) {
// The optype is an immediate value
// This means we need to change the opcode, e.g. ADDr -> ADDi
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
minstr->setOpcode(newOpcode);
}
if (opType == mop.getType())
continue; // no change: this is the most common case
if (opType == MachineOperand::MO_VirtualRegister)
{
constantThatMustBeLoaded = true;
opValue = isSigned
? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
: (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
}
}
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperandReg(op, machineRegNum);
else if (opType == MachineOperand::MO_SignExtendedImmed ||
opType == MachineOperand::MO_UnextendedImmed) {
minstr->SetMachineOperandConst(op, opType, immedValue);
// The optype is or has become an immediate
// This means we need to change the opcode, e.g. ADDr -> ADDi
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
minstr->setOpcode(newOpcode);
} else if (constantThatMustBeLoaded ||
(opValue && isa<GlobalValue>(opValue)))
{ // opValue is a constant that must be explicitly loaded into a reg
assert(opValue);
TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
MVec, target);
minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
tmpReg);
}
}
// Also, check for implicit operands used by the machine instruction
// (no need to check those defined since they cannot be constants).
// These include:
// -- arguments to a Call
// -- return value of a Return
// Any such operand that is a constant value needs to be fixed also.
// The current instructions with implicit refs (viz., Call and Return)
// have no immediate fields, so the constant always needs to be loaded
// into a register.
//
bool isCall = instrInfo.isCall(opCode);
unsigned lastCallArgNum = 0; // unused if not a call
CallArgsDescriptor* argDesc = NULL; // unused if not a call
if (isCall)
argDesc = CallArgsDescriptor::get(minstr);
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
if (isa<Constant>(minstr->getImplicitRef(i)) ||
isa<GlobalValue>(minstr->getImplicitRef(i)))
{
Value* oldVal = minstr->getImplicitRef(i);
TmpInstruction* tmpReg =
InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
minstr->setImplicitRef(i, tmpReg);
if (isCall)
{ // find and replace the argument in the CallArgsDescriptor
unsigned i=lastCallArgNum;
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
++i;
assert(i < argDesc->getNumArgs() &&
"Constant operands to a call *must* be in the arg list");
lastCallArgNum = i;
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
}
}
return MVec;
}