llvm-6502/lib/CodeGen/SelectionDAG/DAGCombiner.cpp

2771 lines
109 KiB
C++

//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// FIXME: Missing folds
// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
// a sequence of multiplies, shifts, and adds. This should be controlled by
// some kind of hint from the target that int div is expensive.
// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
//
// FIXME: Should add a corresponding version of fold AND with
// ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
// we don't have yet.
//
// FIXME: select C, pow2, pow2 -> something smart
// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
// FIXME: Dead stores -> nuke
// FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!)
// FIXME: mul (x, const) -> shifts + adds
// FIXME: undef values
// FIXME: make truncate see through SIGN_EXTEND and AND
// FIXME: (sra (sra x, c1), c2) -> (sra x, c1+c2)
// FIXME: verify that getNode can't return extends with an operand whose type
// is >= to that of the extend.
// FIXME: divide by zero is currently left unfolded. do we want to turn this
// into an undef?
// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
// FIXME: reassociate (X+C)+Y into (X+Y)+C if the inner expression has one use
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dagcombine"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace llvm;
namespace {
Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined");
class DAGCombiner {
SelectionDAG &DAG;
TargetLowering &TLI;
bool AfterLegalize;
// Worklist of all of the nodes that need to be simplified.
std::vector<SDNode*> WorkList;
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
///
void AddUsersToWorkList(SDNode *N) {
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI)
WorkList.push_back(*UI);
}
/// removeFromWorkList - remove all instances of N from the worklist.
void removeFromWorkList(SDNode *N) {
WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
WorkList.end());
}
SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
++NodesCombined;
DEBUG(std::cerr << "\nReplacing "; N->dump();
std::cerr << "\nWith: "; To[0].Val->dump();
std::cerr << " and " << To.size()-1 << " other values\n");
std::vector<SDNode*> NowDead;
DAG.ReplaceAllUsesWith(N, To, &NowDead);
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = To.size(); i != e; ++i) {
WorkList.push_back(To[i].Val);
AddUsersToWorkList(To[i].Val);
}
// Nodes can end up on the worklist more than once. Make sure we do
// not process a node that has been replaced.
removeFromWorkList(N);
for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
removeFromWorkList(NowDead[i]);
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
return SDOperand(N, 0);
}
SDOperand CombineTo(SDNode *N, SDOperand Res) {
std::vector<SDOperand> To;
To.push_back(Res);
return CombineTo(N, To);
}
SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
std::vector<SDOperand> To;
To.push_back(Res0);
To.push_back(Res1);
return CombineTo(N, To);
}
/// visit - call the node-specific routine that knows how to fold each
/// particular type of node.
SDOperand visit(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDOperand.Val == 0 - No change was made
// SDOperand.Val == N - N was replaced, is dead, and is already handled.
// otherwise - N should be replaced by the returned Operand.
//
SDOperand visitTokenFactor(SDNode *N);
SDOperand visitADD(SDNode *N);
SDOperand visitSUB(SDNode *N);
SDOperand visitMUL(SDNode *N);
SDOperand visitSDIV(SDNode *N);
SDOperand visitUDIV(SDNode *N);
SDOperand visitSREM(SDNode *N);
SDOperand visitUREM(SDNode *N);
SDOperand visitMULHU(SDNode *N);
SDOperand visitMULHS(SDNode *N);
SDOperand visitAND(SDNode *N);
SDOperand visitOR(SDNode *N);
SDOperand visitXOR(SDNode *N);
SDOperand visitSHL(SDNode *N);
SDOperand visitSRA(SDNode *N);
SDOperand visitSRL(SDNode *N);
SDOperand visitCTLZ(SDNode *N);
SDOperand visitCTTZ(SDNode *N);
SDOperand visitCTPOP(SDNode *N);
SDOperand visitSELECT(SDNode *N);
SDOperand visitSELECT_CC(SDNode *N);
SDOperand visitSETCC(SDNode *N);
SDOperand visitADD_PARTS(SDNode *N);
SDOperand visitSUB_PARTS(SDNode *N);
SDOperand visitSIGN_EXTEND(SDNode *N);
SDOperand visitZERO_EXTEND(SDNode *N);
SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
SDOperand visitTRUNCATE(SDNode *N);
SDOperand visitBIT_CONVERT(SDNode *N);
SDOperand visitFADD(SDNode *N);
SDOperand visitFSUB(SDNode *N);
SDOperand visitFMUL(SDNode *N);
SDOperand visitFDIV(SDNode *N);
SDOperand visitFREM(SDNode *N);
SDOperand visitSINT_TO_FP(SDNode *N);
SDOperand visitUINT_TO_FP(SDNode *N);
SDOperand visitFP_TO_SINT(SDNode *N);
SDOperand visitFP_TO_UINT(SDNode *N);
SDOperand visitFP_ROUND(SDNode *N);
SDOperand visitFP_ROUND_INREG(SDNode *N);
SDOperand visitFP_EXTEND(SDNode *N);
SDOperand visitFNEG(SDNode *N);
SDOperand visitFABS(SDNode *N);
SDOperand visitBRCOND(SDNode *N);
SDOperand visitBRCONDTWOWAY(SDNode *N);
SDOperand visitBR_CC(SDNode *N);
SDOperand visitBRTWOWAY_CC(SDNode *N);
SDOperand visitLOAD(SDNode *N);
SDOperand visitSTORE(SDNode *N);
SDOperand visitLOCATION(SDNode *N);
SDOperand visitDEBUGLOC(SDNode *N);
bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
SDOperand N3, ISD::CondCode CC);
SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
ISD::CondCode Cond, bool foldBooleans = true);
SDOperand BuildSDIV(SDNode *N);
SDOperand BuildUDIV(SDNode *N);
public:
DAGCombiner(SelectionDAG &D)
: DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
/// Run - runs the dag combiner on all nodes in the work list
void Run(bool RunningAfterLegalize);
};
}
struct ms {
int64_t m; // magic number
int64_t s; // shift amount
};
struct mu {
uint64_t m; // magic number
int64_t a; // add indicator
int64_t s; // shift amount
};
/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1.
static ms magic32(int32_t d) {
int32_t p;
uint32_t ad, anc, delta, q1, r1, q2, r2, t;
const uint32_t two31 = 0x80000000U;
struct ms mag;
ad = abs(d);
t = two31 + ((uint32_t)d >> 31);
anc = t - 1 - t%ad; // absolute value of nc
p = 31; // initialize p
q1 = two31/anc; // initialize q1 = 2p/abs(nc)
r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
q2 = two31/ad; // initialize q2 = 2p/abs(d)
r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
do {
p = p + 1;
q1 = 2*q1; // update q1 = 2p/abs(nc)
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
if (r1 >= anc) { // must be unsigned comparison
q1 = q1 + 1;
r1 = r1 - anc;
}
q2 = 2*q2; // update q2 = 2p/abs(d)
r2 = 2*r2; // update r2 = rem(2p/abs(d))
if (r2 >= ad) { // must be unsigned comparison
q2 = q2 + 1;
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
mag.m = (int32_t)(q2 + 1); // make sure to sign extend
if (d < 0) mag.m = -mag.m; // resulting magic number
mag.s = p - 32; // resulting shift
return mag;
}
/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
static mu magicu32(uint32_t d) {
int32_t p;
uint32_t nc, delta, q1, r1, q2, r2;
struct mu magu;
magu.a = 0; // initialize "add" indicator
nc = - 1 - (-d)%d;
p = 31; // initialize p
q1 = 0x80000000/nc; // initialize q1 = 2p/nc
r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
do {
p = p + 1;
if (r1 >= nc - r1 ) {
q1 = 2*q1 + 1; // update q1
r1 = 2*r1 - nc; // update r1
}
else {
q1 = 2*q1; // update q1
r1 = 2*r1; // update r1
}
if (r2 + 1 >= d - r2) {
if (q2 >= 0x7FFFFFFF) magu.a = 1;
q2 = 2*q2 + 1; // update q2
r2 = 2*r2 + 1 - d; // update r2
}
else {
if (q2 >= 0x80000000) magu.a = 1;
q2 = 2*q2; // update q2
r2 = 2*r2 + 1; // update r2
}
delta = d - 1 - r2;
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
magu.m = q2 + 1; // resulting magic number
magu.s = p - 32; // resulting shift
return magu;
}
/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1.
static ms magic64(int64_t d) {
int64_t p;
uint64_t ad, anc, delta, q1, r1, q2, r2, t;
const uint64_t two63 = 9223372036854775808ULL; // 2^63
struct ms mag;
ad = d >= 0 ? d : -d;
t = two63 + ((uint64_t)d >> 63);
anc = t - 1 - t%ad; // absolute value of nc
p = 63; // initialize p
q1 = two63/anc; // initialize q1 = 2p/abs(nc)
r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
q2 = two63/ad; // initialize q2 = 2p/abs(d)
r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
do {
p = p + 1;
q1 = 2*q1; // update q1 = 2p/abs(nc)
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
if (r1 >= anc) { // must be unsigned comparison
q1 = q1 + 1;
r1 = r1 - anc;
}
q2 = 2*q2; // update q2 = 2p/abs(d)
r2 = 2*r2; // update r2 = rem(2p/abs(d))
if (r2 >= ad) { // must be unsigned comparison
q2 = q2 + 1;
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
mag.m = q2 + 1;
if (d < 0) mag.m = -mag.m; // resulting magic number
mag.s = p - 64; // resulting shift
return mag;
}
/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
static mu magicu64(uint64_t d)
{
int64_t p;
uint64_t nc, delta, q1, r1, q2, r2;
struct mu magu;
magu.a = 0; // initialize "add" indicator
nc = - 1 - (-d)%d;
p = 63; // initialize p
q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
do {
p = p + 1;
if (r1 >= nc - r1 ) {
q1 = 2*q1 + 1; // update q1
r1 = 2*r1 - nc; // update r1
}
else {
q1 = 2*q1; // update q1
r1 = 2*r1; // update r1
}
if (r2 + 1 >= d - r2) {
if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
q2 = 2*q2 + 1; // update q2
r2 = 2*r2 + 1 - d; // update r2
}
else {
if (q2 >= 0x8000000000000000ull) magu.a = 1;
q2 = 2*q2; // update q2
r2 = 2*r2 + 1; // update r2
}
delta = d - 1 - r2;
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
magu.m = q2 + 1; // resulting magic number
magu.s = p - 64; // resulting shift
return magu;
}
// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
// that selects between the values 1 and 0, making it equivalent to a setcc.
// Also, set the incoming LHS, RHS, and CC references to the appropriate
// nodes based on the type of node we are checking. This simplifies life a
// bit for the callers.
static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
SDOperand &CC) {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (N.getOpcode() == ISD::SELECT_CC &&
N.getOperand(2).getOpcode() == ISD::Constant &&
N.getOperand(3).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
return false;
}
// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
// one use. If this is true, it allows the users to invert the operation for
// free when it is profitable to do so.
static bool isOneUseSetCC(SDOperand N) {
SDOperand N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
return true;
return false;
}
// FIXME: This should probably go in the ISD class rather than being duplicated
// in several files.
static bool isCommutativeBinOp(unsigned Opcode) {
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR: return true;
default: return false; // FIXME: Need commutative info for user ops!
}
}
void DAGCombiner::Run(bool RunningAfterLegalize) {
// set the instance variable, so that the various visit routines may use it.
AfterLegalize = RunningAfterLegalize;
// Add all the dag nodes to the worklist.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I)
WorkList.push_back(I);
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// while the worklist isn't empty, inspect the node on the end of it and
// try and combine it.
while (!WorkList.empty()) {
SDNode *N = WorkList.back();
WorkList.pop_back();
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (N->use_empty() && N != &Dummy) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
WorkList.push_back(N->getOperand(i).Val);
removeFromWorkList(N);
DAG.DeleteNode(N);
continue;
}
SDOperand RV = visit(N);
if (RV.Val) {
++NodesCombined;
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.Val != N) {
DEBUG(std::cerr << "\nReplacing "; N->dump();
std::cerr << "\nWith: "; RV.Val->dump();
std::cerr << '\n');
std::vector<SDNode*> NowDead;
DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead);
// Push the new node and any users onto the worklist
WorkList.push_back(RV.Val);
AddUsersToWorkList(RV.Val);
// Nodes can end up on the worklist more than once. Make sure we do
// not process a node that has been replaced.
removeFromWorkList(N);
for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
removeFromWorkList(NowDead[i]);
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
}
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
}
SDOperand DAGCombiner::visit(SDNode *N) {
switch(N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::MUL: return visitMUL(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM: return visitSREM(N);
case ISD::UREM: return visitUREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::ADD_PARTS: return visitADD_PARTS(N);
case ISD::SUB_PARTS: return visitSUB_PARTS(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
case ISD::FADD: return visitFADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BRCONDTWOWAY: return visitBRCONDTWOWAY(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::BRTWOWAY_CC: return visitBRTWOWAY_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::LOCATION: return visitLOCATION(N);
case ISD::DEBUG_LOC: return visitDEBUGLOC(N);
}
return SDOperand();
}
SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
std::vector<SDOperand> Ops;
bool Changed = false;
// If the token factor has two operands and one is the entry token, replace
// the token factor with the other operand.
if (N->getNumOperands() == 2) {
if (N->getOperand(0).getOpcode() == ISD::EntryToken)
return N->getOperand(1);
if (N->getOperand(1).getOpcode() == ISD::EntryToken)
return N->getOperand(0);
}
// fold (tokenfactor (tokenfactor)) -> tokenfactor
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDOperand Op = N->getOperand(i);
if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) {
Changed = true;
for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j)
Ops.push_back(Op.getOperand(j));
} else {
Ops.push_back(Op);
}
}
if (Changed)
return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
return SDOperand();
}
SDOperand DAGCombiner::visitADD(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
// fold (add c1, c2) -> c1+c2
if (N0C && N1C)
return DAG.getNode(ISD::ADD, VT, N0, N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::ADD, VT, N1, N0);
// fold (add x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (add (add x, c1), c2) -> (add x, c1+c2)
if (N1C && N0.getOpcode() == ISD::ADD) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::ADD, VT, N0.getOperand(1),
DAG.getConstant(N1C->getValue()+N00C->getValue(), VT));
if (N01C)
return DAG.getNode(ISD::ADD, VT, N0.getOperand(0),
DAG.getConstant(N1C->getValue()+N01C->getValue(), VT));
}
// fold ((c1-A)+c2) -> (c1+c2)-A
if (N1C && N0.getOpcode() == ISD::SUB)
if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
return DAG.getNode(ISD::SUB, VT,
DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
N0.getOperand(1));
// fold ((0-A) + B) -> B-A
if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
// fold (A + (0-B)) -> A-B
if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
return SDOperand();
}
SDOperand DAGCombiner::visitSUB(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
MVT::ValueType VT = N0.getValueType();
// fold (sub x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, N->getValueType(0));
// fold (sub c1, c2) -> c1-c2
if (N0C && N1C)
return DAG.getNode(ISD::SUB, VT, N0, N1);
// fold (sub x, c) -> (add x, -c)
if (N1C)
return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
return SDOperand();
}
SDOperand DAGCombiner::visitMUL(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
// fold (mul c1, c2) -> c1*c2
if (N0C && N1C)
return DAG.getNode(ISD::MUL, VT, N0, N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::MUL, VT, N1, N0);
// fold (mul x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mul x, -1) -> 0-x
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
// fold (mul x, (1 << c)) -> x << c
if (N1C && isPowerOf2_64(N1C->getValue()))
return DAG.getNode(ISD::SHL, VT, N0,
DAG.getConstant(Log2_64(N1C->getValue()),
TLI.getShiftAmountTy()));
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
DAG.getNode(ISD::SHL, VT, N0,
DAG.getConstant(Log2_64(-N1C->getSignExtended()),
TLI.getShiftAmountTy())));
}
// fold (mul (mul x, c1), c2) -> (mul x, c1*c2)
if (N1C && N0.getOpcode() == ISD::MUL) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::MUL, VT, N0.getOperand(1),
DAG.getConstant(N1C->getValue()*N00C->getValue(), VT));
if (N01C)
return DAG.getNode(ISD::MUL, VT, N0.getOperand(0),
DAG.getConstant(N1C->getValue()*N01C->getValue(), VT));
}
return SDOperand();
}
SDOperand DAGCombiner::visitSDIV(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
MVT::ValueType VT = N->getValueType(0);
// fold (sdiv c1, c2) -> c1/c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.getNode(ISD::SDIV, VT, N0, N1);
// fold (sdiv X, 1) -> X
if (N1C && N1C->getSignExtended() == 1LL)
return N0;
// fold (sdiv X, -1) -> 0-X
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
if (TLI.MaskedValueIsZero(N1, SignBit) &&
TLI.MaskedValueIsZero(N0, SignBit))
return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
// fold (sdiv X, pow2) -> (add (sra X, log(pow2)), (srl X, sizeof(X)-1))
if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
(isPowerOf2_64(N1C->getSignExtended()) ||
isPowerOf2_64(-N1C->getSignExtended()))) {
// If dividing by powers of two is cheap, then don't perform the following
// fold.
if (TLI.isPow2DivCheap())
return SDOperand();
int64_t pow2 = N1C->getSignExtended();
int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
SDOperand SRL = DAG.getNode(ISD::SRL, VT, N0,
DAG.getConstant(MVT::getSizeInBits(VT)-1,
TLI.getShiftAmountTy()));
WorkList.push_back(SRL.Val);
SDOperand SGN = DAG.getNode(ISD::ADD, VT, N0, SRL);
WorkList.push_back(SGN.Val);
SDOperand SRA = DAG.getNode(ISD::SRA, VT, SGN,
DAG.getConstant(Log2_64(abs2),
TLI.getShiftAmountTy()));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
if (pow2 > 0)
return SRA;
WorkList.push_back(SRA.Val);
return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
}
// if integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence.
if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
!TLI.isIntDivCheap()) {
SDOperand Op = BuildSDIV(N);
if (Op.Val) return Op;
}
return SDOperand();
}
SDOperand DAGCombiner::visitUDIV(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
MVT::ValueType VT = N->getValueType(0);
// fold (udiv c1, c2) -> c1/c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.getNode(ISD::UDIV, VT, N0, N1);
// fold (udiv x, (1 << c)) -> x >>u c
if (N1C && isPowerOf2_64(N1C->getValue()))
return DAG.getNode(ISD::SRL, N->getValueType(0), N0,
DAG.getConstant(Log2_64(N1C->getValue()),
TLI.getShiftAmountTy()));
// fold (udiv x, c) -> alternate
if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
SDOperand Op = BuildUDIV(N);
if (Op.Val) return Op;
}
return SDOperand();
}
SDOperand DAGCombiner::visitSREM(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (srem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.getNode(ISD::SREM, VT, N0, N1);
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
if (TLI.MaskedValueIsZero(N1, SignBit) &&
TLI.MaskedValueIsZero(N0, SignBit))
return DAG.getNode(ISD::UREM, VT, N0, N1);
return SDOperand();
}
SDOperand DAGCombiner::visitUREM(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (urem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.getNode(ISD::UREM, VT, N0, N1);
// fold (urem x, pow2) -> (and x, pow2-1)
if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
return SDOperand();
}
SDOperand DAGCombiner::visitMULHS(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// fold (mulhs x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (N1C && N1C->getValue() == 1)
return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
TLI.getShiftAmountTy()));
return SDOperand();
}
SDOperand DAGCombiner::visitMULHU(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// fold (mulhu x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mulhu x, 1) -> 0
if (N1C && N1C->getValue() == 1)
return DAG.getConstant(0, N0.getValueType());
return SDOperand();
}
SDOperand DAGCombiner::visitAND(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N1.getValueType();
unsigned OpSizeInBits = MVT::getSizeInBits(VT);
// fold (and c1, c2) -> c1&c2
if (N0C && N1C)
return DAG.getNode(ISD::AND, VT, N0, N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::AND, VT, N1, N0);
// fold (and x, -1) -> x
if (N1C && N1C->isAllOnesValue())
return N0;
// if (and x, c) is known to be zero, return 0
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
return DAG.getConstant(0, VT);
// fold (and x, c) -> x iff (x & ~c) == 0
if (N1C &&
TLI.MaskedValueIsZero(N0, ~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
return N0;
// fold (and (and x, c1), c2) -> (and x, c1^c2)
if (N1C && N0.getOpcode() == ISD::AND) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::AND, VT, N0.getOperand(1),
DAG.getConstant(N1C->getValue()&N00C->getValue(), VT));
if (N01C)
return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
DAG.getConstant(N1C->getValue()&N01C->getValue(), VT));
}
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
if (N1C && N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
unsigned ExtendBits =
MVT::getSizeInBits(cast<VTSDNode>(N0.getOperand(1))->getVT());
if (ExtendBits == 64 || ((N1C->getValue() & (~0ULL << ExtendBits)) == 0))
return DAG.getNode(ISD::AND, VT, N0.getOperand(0), N1);
}
// fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
if (N1C && N0.getOpcode() == ISD::OR)
if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
return N1;
// fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
MVT::isInteger(LL.getValueType())) {
// fold (X == 0) & (Y == 0) -> (X|Y == 0)
if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
WorkList.push_back(ORNode.Val);
return DAG.getSetCC(VT, ORNode, LR, Op1);
}
// fold (X == -1) & (Y == -1) -> (X&Y == -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
WorkList.push_back(ANDNode.Val);
return DAG.getSetCC(VT, ANDNode, LR, Op1);
}
// fold (X > -1) & (Y > -1) -> (X|Y > -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
WorkList.push_back(ORNode.Val);
return DAG.getSetCC(VT, ORNode, LR, Op1);
}
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = MVT::isInteger(LL.getValueType());
ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID)
return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
}
}
// fold (and (zext x), (zext y)) -> (zext (and x, y))
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
WorkList.push_back(ANDNode.Val);
return DAG.getNode(ISD::ZERO_EXTEND, VT, ANDNode);
}
// fold (and (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (and x, y))
if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
(N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
(N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
N0.getOperand(1) == N1.getOperand(1)) {
SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
WorkList.push_back(ANDNode.Val);
return DAG.getNode(N0.getOpcode(), VT, ANDNode, N0.getOperand(1));
}
// fold (and (sra)) -> (and (srl)) when possible.
if (N0.getOpcode() == ISD::SRA && N0.Val->hasOneUse()) {
if (ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
// If the RHS of the AND has zeros where the sign bits of the SRA will
// land, turn the SRA into an SRL.
if (TLI.MaskedValueIsZero(N1, (~0ULL << (OpSizeInBits-N01C->getValue())) &
(~0ULL>>(64-OpSizeInBits)))) {
WorkList.push_back(N);
CombineTo(N0.Val, DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
N0.getOperand(1)));
return SDOperand();
}
}
}
// fold (zext_inreg (extload x)) -> (zextload x)
if (N0.getOpcode() == ISD::EXTLOAD) {
MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
(!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
EVT);
WorkList.push_back(N);
CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
return SDOperand();
}
}
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) {
MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
(!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
EVT);
WorkList.push_back(N);
CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
return SDOperand();
}
}
return SDOperand();
}
SDOperand DAGCombiner::visitOR(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N1.getValueType();
unsigned OpSizeInBits = MVT::getSizeInBits(VT);
// fold (or c1, c2) -> c1|c2
if (N0C && N1C)
return DAG.getNode(ISD::OR, VT, N0, N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::OR, VT, N1, N0);
// fold (or x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (or x, -1) -> -1
if (N1C && N1C->isAllOnesValue())
return N1;
// fold (or x, c) -> c iff (x & ~c) == 0
if (N1C &&
TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
return N1;
// fold (or (or x, c1), c2) -> (or x, c1|c2)
if (N1C && N0.getOpcode() == ISD::OR) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::OR, VT, N0.getOperand(1),
DAG.getConstant(N1C->getValue()|N00C->getValue(), VT));
if (N01C)
return DAG.getNode(ISD::OR, VT, N0.getOperand(0),
DAG.getConstant(N1C->getValue()|N01C->getValue(), VT));
} else if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
N1),
DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
}
// fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
MVT::isInteger(LL.getValueType())) {
// fold (X != 0) | (Y != 0) -> (X|Y != 0)
// fold (X < 0) | (Y < 0) -> (X|Y < 0)
if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
(Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
WorkList.push_back(ORNode.Val);
return DAG.getSetCC(VT, ORNode, LR, Op1);
}
// fold (X != -1) | (Y != -1) -> (X&Y != -1)
// fold (X > -1) | (Y > -1) -> (X&Y > -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
(Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
WorkList.push_back(ANDNode.Val);
return DAG.getSetCC(VT, ANDNode, LR, Op1);
}
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = MVT::isInteger(LL.getValueType());
ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID)
return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
}
}
// fold (or (zext x), (zext y)) -> (zext (or x, y))
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
WorkList.push_back(ORNode.Val);
return DAG.getNode(ISD::ZERO_EXTEND, VT, ORNode);
}
// canonicalize shl to left side in a shl/srl pair, to match rotate
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
// check for rotl, rotr
if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL &&
N0.getOperand(0) == N1.getOperand(0) &&
TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) {
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
if (N0.getOperand(1).getOpcode() == ISD::Constant &&
N1.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
if ((c1val + c2val) == OpSizeInBits)
return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
}
// fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
if (N1.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1) == N1.getOperand(1).getOperand(1))
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0)))
if (SUBC->getValue() == OpSizeInBits)
return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
// fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
if (N0.getOperand(1).getOpcode() == ISD::SUB &&
N1.getOperand(1) == N0.getOperand(1).getOperand(1))
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0)))
if (SUBC->getValue() == OpSizeInBits) {
if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT))
return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0),
N1.getOperand(1));
else
return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0),
N0.getOperand(1));
}
}
return SDOperand();
}
SDOperand DAGCombiner::visitXOR(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand LHS, RHS, CC;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
// fold (xor c1, c2) -> c1^c2
if (N0C && N1C)
return DAG.getNode(ISD::XOR, VT, N0, N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::XOR, VT, N1, N0);
// fold (xor x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold !(x cc y) -> (x !cc y)
if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
bool isInt = MVT::isInteger(LHS.getValueType());
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
isInt);
if (N0.getOpcode() == ISD::SETCC)
return DAG.getSetCC(VT, LHS, RHS, NotCC);
if (N0.getOpcode() == ISD::SELECT_CC)
return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
assert(0 && "Unhandled SetCC Equivalent!");
abort();
}
// fold !(x or y) -> (!x and !y) iff x or y are setcc
if (N1C && N1C->getValue() == 1 &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS
RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS
WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val);
return DAG.getNode(NewOpcode, VT, LHS, RHS);
}
}
// fold !(x or y) -> (!x and !y) iff x or y are constants
if (N1C && N1C->isAllOnesValue() &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS
RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS
WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val);
return DAG.getNode(NewOpcode, VT, LHS, RHS);
}
}
// fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
if (N1C && N0.getOpcode() == ISD::XOR) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
if (N01C)
return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
}
// fold (xor x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, VT);
// fold (xor (zext x), (zext y)) -> (zext (xor x, y))
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
WorkList.push_back(XORNode.Val);
return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
}
return SDOperand();
}
SDOperand DAGCombiner::visitSHL(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
unsigned OpSizeInBits = MVT::getSizeInBits(VT);
// fold (shl c1, c2) -> c1<<c2
if (N0C && N1C)
return DAG.getNode(ISD::SHL, VT, N0, N1);
// fold (shl 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (shl x, c >= size(x)) -> undef
if (N1C && N1C->getValue() >= OpSizeInBits)
return DAG.getNode(ISD::UNDEF, VT);
// fold (shl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// if (shl x, c) is known to be zero, return 0
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
return DAG.getConstant(0, VT);
// fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
if (N1C && N0.getOpcode() == ISD::SHL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
uint64_t c2 = N1C->getValue();
if (c1 + c2 > OpSizeInBits)
return DAG.getConstant(0, VT);
return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, N1.getValueType()));
}
// fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
// (srl (and x, -1 << c1), c1-c2)
if (N1C && N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
uint64_t c2 = N1C->getValue();
SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
DAG.getConstant(~0ULL << c1, VT));
if (c2 > c1)
return DAG.getNode(ISD::SHL, VT, Mask,
DAG.getConstant(c2-c1, N1.getValueType()));
else
return DAG.getNode(ISD::SRL, VT, Mask,
DAG.getConstant(c1-c2, N1.getValueType()));
}
// fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
DAG.getConstant(~0ULL << N1C->getValue(), VT));
return SDOperand();
}
SDOperand DAGCombiner::visitSRA(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
unsigned OpSizeInBits = MVT::getSizeInBits(VT);
// fold (sra c1, c2) -> c1>>c2
if (N0C && N1C)
return DAG.getNode(ISD::SRA, VT, N0, N1);
// fold (sra 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (sra -1, x) -> -1
if (N0C && N0C->isAllOnesValue())
return N0;
// fold (sra x, c >= size(x)) -> undef
if (N1C && N1C->getValue() >= OpSizeInBits)
return DAG.getNode(ISD::UNDEF, VT);
// fold (sra x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// If the sign bit is known to be zero, switch this to a SRL.
if (TLI.MaskedValueIsZero(N0, (1ULL << (OpSizeInBits-1))))
return DAG.getNode(ISD::SRL, VT, N0, N1);
return SDOperand();
}
SDOperand DAGCombiner::visitSRL(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT::ValueType VT = N0.getValueType();
unsigned OpSizeInBits = MVT::getSizeInBits(VT);
// fold (srl c1, c2) -> c1 >>u c2
if (N0C && N1C)
return DAG.getNode(ISD::SRL, VT, N0, N1);
// fold (srl 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (srl x, c >= size(x)) -> undef
if (N1C && N1C->getValue() >= OpSizeInBits)
return DAG.getNode(ISD::UNDEF, VT);
// fold (srl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// if (srl x, c) is known to be zero, return 0
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
return DAG.getConstant(0, VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
if (N1C && N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
uint64_t c2 = N1C->getValue();
if (c1 + c2 > OpSizeInBits)
return DAG.getConstant(0, VT);
return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, N1.getValueType()));
}
return SDOperand();
}
SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (N0C)
return DAG.getNode(ISD::CTLZ, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (N0C)
return DAG.getNode(ISD::CTTZ, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (N0C)
return DAG.getNode(ISD::CTPOP, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitSELECT(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
MVT::ValueType VT = N->getValueType(0);
// fold select C, X, X -> X
if (N1 == N2)
return N1;
// fold select true, X, Y -> X
if (N0C && !N0C->isNullValue())
return N1;
// fold select false, X, Y -> Y
if (N0C && N0C->isNullValue())
return N2;
// fold select C, 1, X -> C | X
if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
return DAG.getNode(ISD::OR, VT, N0, N2);
// fold select C, 0, X -> ~C & X
// FIXME: this should check for C type == X type, not i1?
if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
WorkList.push_back(XORNode.Val);
return DAG.getNode(ISD::AND, VT, XORNode, N2);
}
// fold select C, X, 1 -> ~C | X
if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
WorkList.push_back(XORNode.Val);
return DAG.getNode(ISD::OR, VT, XORNode, N1);
}
// fold select C, X, 0 -> C & X
// FIXME: this should check for C type == X type, not i1?
if (MVT::i1 == VT && N2C && N2C->isNullValue())
return DAG.getNode(ISD::AND, VT, N0, N1);
// fold X ? X : Y --> X ? 1 : Y --> X | Y
if (MVT::i1 == VT && N0 == N1)
return DAG.getNode(ISD::OR, VT, N0, N2);
// fold X ? Y : X --> X ? Y : 0 --> X & Y
if (MVT::i1 == VT && N0 == N2)
return DAG.getNode(ISD::AND, VT, N0, N1);
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDOperand();
// fold selects based on a setcc into other things, such as min/max/abs
if (N0.getOpcode() == ISD::SETCC)
return SimplifySelect(N0, N1, N2);
return SDOperand();
}
SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand N2 = N->getOperand(2);
SDOperand N3 = N->getOperand(3);
SDOperand N4 = N->getOperand(4);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
// Determine if the condition we're dealing with is constant
SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
// fold select_cc lhs, rhs, x, x, cc -> x
if (N2 == N3)
return N2;
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N2, N3))
return SDOperand();
// fold select_cc into other things, such as min/max/abs
return SimplifySelectCC(N0, N1, N2, N3, CC);
}
SDOperand DAGCombiner::visitSETCC(SDNode *N) {
return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
cast<CondCodeSDNode>(N->getOperand(2))->get());
}
SDOperand DAGCombiner::visitADD_PARTS(SDNode *N) {
SDOperand LHSLo = N->getOperand(0);
SDOperand RHSLo = N->getOperand(2);
MVT::ValueType VT = LHSLo.getValueType();
// fold (a_Hi, 0) + (b_Hi, b_Lo) -> (b_Hi + a_Hi, b_Lo)
if (TLI.MaskedValueIsZero(LHSLo, (1ULL << MVT::getSizeInBits(VT))-1)) {
SDOperand Hi = DAG.getNode(ISD::ADD, VT, N->getOperand(1),
N->getOperand(3));
WorkList.push_back(Hi.Val);
CombineTo(N, RHSLo, Hi);
return SDOperand();
}
// fold (a_Hi, a_Lo) + (b_Hi, 0) -> (a_Hi + b_Hi, a_Lo)
if (TLI.MaskedValueIsZero(RHSLo, (1ULL << MVT::getSizeInBits(VT))-1)) {
SDOperand Hi = DAG.getNode(ISD::ADD, VT, N->getOperand(1),
N->getOperand(3));
WorkList.push_back(Hi.Val);
CombineTo(N, LHSLo, Hi);
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitSUB_PARTS(SDNode *N) {
SDOperand LHSLo = N->getOperand(0);
SDOperand RHSLo = N->getOperand(2);
MVT::ValueType VT = LHSLo.getValueType();
// fold (a_Hi, a_Lo) - (b_Hi, 0) -> (a_Hi - b_Hi, a_Lo)
if (TLI.MaskedValueIsZero(RHSLo, (1ULL << MVT::getSizeInBits(VT))-1)) {
SDOperand Hi = DAG.getNode(ISD::SUB, VT, N->getOperand(1),
N->getOperand(3));
WorkList.push_back(Hi.Val);
CombineTo(N, LHSLo, Hi);
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (sext c1) -> c1
if (N0C)
return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
// fold (sext (sext x)) -> (sext x)
if (N0.getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
// fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size.
if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
(!AfterLegalize ||
TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
DAG.getValueType(N0.getValueType()));
// fold (sext (load x)) -> (sext (truncate (sextload x)))
if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
(!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
N0.getValueType());
CombineTo(N, ExtLoad);
CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDOperand();
}
// fold (sext (sextload x)) -> (sext (truncate (sextload x)))
// fold (sext ( extload x)) -> (sext (truncate (sextload x)))
if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
N0.hasOneUse()) {
SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
N0.getOperand(3));
CombineTo(N, ExtLoad);
CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (zext c1) -> c1
if (N0C)
return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
// fold (zext (zext x)) -> (zext x)
if (N0.getOpcode() == ISD::ZERO_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
// fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size.
if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
(!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType())))
return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType());
// fold (zext (load x)) -> (zext (truncate (zextload x)))
if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
(!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){
SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
N0.getValueType());
CombineTo(N, ExtLoad);
CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDOperand();
}
// fold (zext (zextload x)) -> (zext (truncate (zextload x)))
// fold (zext ( extload x)) -> (zext (truncate (zextload x)))
if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
N0.hasOneUse()) {
SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
N0.getOperand(3));
CombineTo(N, ExtLoad);
CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
unsigned EVTBits = MVT::getSizeInBits(EVT);
// fold (sext_in_reg c1) -> c1
if (N0C) {
SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT);
return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate);
}
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
return N0;
}
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
}
// fold (sext_in_reg (assert_sext x)) -> (assert_sext x)
if (N0.getOpcode() == ISD::AssertSext &&
cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
return N0;
}
// fold (sext_in_reg (sextload x)) -> (sextload x)
if (N0.getOpcode() == ISD::SEXTLOAD &&
cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) {
return N0;
}
// fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1
if (N0.getOpcode() == ISD::SETCC &&
TLI.getSetCCResultContents() ==
TargetLowering::ZeroOrNegativeOneSetCCResult)
return N0;
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
return DAG.getNode(ISD::AND, N0.getValueType(), N0,
DAG.getConstant(~0ULL >> (64-EVTBits), VT));
// fold (sext_in_reg (srl x)) -> sra x
if (N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N0.getOperand(1))->getValue() == EVTBits) {
return DAG.getNode(ISD::SRA, N0.getValueType(), N0.getOperand(0),
N0.getOperand(1));
}
// fold (sext_inreg (extload x)) -> (sextload x)
if (N0.getOpcode() == ISD::EXTLOAD &&
EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
(!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
EVT);
CombineTo(N, ExtLoad);
CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
return SDOperand();
}
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() &&
EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
(!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
N0.getOperand(1), N0.getOperand(2),
EVT);
CombineTo(N, ExtLoad);
CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// noop truncate
if (N0.getValueType() == N->getValueType(0))
return N0;
// fold (truncate c1) -> c1
if (N0C)
return DAG.getNode(ISD::TRUNCATE, VT, N0);
// fold (truncate (truncate x)) -> (truncate x)
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){
if (N0.getValueType() < VT)
// if the source is smaller than the dest, we still need an extend
return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
else if (N0.getValueType() > VT)
// if the source is larger than the dest, than we just need the truncate
return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
else
// if the source and dest are the same type, we can drop both the extend
// and the truncate
return N0.getOperand(0);
}
// fold (truncate (load x)) -> (smaller load x)
if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
"Cannot truncate to larger type!");
MVT::ValueType PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to add an offset to the pointer to load
// the correct bytes. For little endian systems, we merely need to read
// fewer bytes from the same pointer.
uint64_t PtrOff =
(MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) :
DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1),
DAG.getConstant(PtrOff, PtrType));
WorkList.push_back(NewPtr.Val);
SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2));
WorkList.push_back(N);
CombineTo(N0.Val, Load, Load.getValue(1));
return SDOperand();
}
return SDOperand();
}
SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
SDOperand N0 = N->getOperand(0);
MVT::ValueType VT = N->getValueType(0);
// If the input is a constant, let getNode() fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
if (Res.Val != N) return Res;
}
if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2)
return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
// fold (conv (load x)) -> (load (conv*)x)
// FIXME: These xforms need to know that the resultant load doesn't need a
// higher alignment than the original!
if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1),
N0.getOperand(2));
WorkList.push_back(N);
CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
Load.getValue(1));
return Load;
}
return SDOperand();
}
SDOperand DAGCombiner::visitFADD(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (fadd c1, c2) -> c1+c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FADD, VT, N0, N1);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, VT, N1, N0);
// fold (A + (-B)) -> A-B
if (N1.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
// fold ((-A) + B) -> B-A
if (N0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
return SDOperand();
}
SDOperand DAGCombiner::visitFSUB(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FSUB, VT, N0, N1);
// fold (A-(-B)) -> A+B
if (N1.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
return SDOperand();
}
SDOperand DAGCombiner::visitFMUL(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FMUL, VT, N0, N1);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FMUL, VT, N1, N0);
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, VT, N0, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFDIV(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (fdiv c1, c2) -> c1/c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FDIV, VT, N0, N1);
return SDOperand();
}
SDOperand DAGCombiner::visitFREM(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT::ValueType VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FREM, VT, N0, N1);
return SDOperand();
}
SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (sint_to_fp c1) -> c1fp
if (N0C)
return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (uint_to_fp c1) -> c1fp
if (N0C)
return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fp_to_sint c1fp) -> c1
if (N0CFP)
return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fp_to_uint c1fp) -> c1
if (N0CFP)
return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP)
return DAG.getNode(ISD::FP_ROUND, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDOperand N0 = N->getOperand(0);
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
// fold (fp_round_inreg c1fp) -> c1fp
if (N0CFP) {
SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
return DAG.getNode(ISD::FP_EXTEND, VT, Round);
}
return SDOperand();
}
SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fp_extend c1fp) -> c1fp
if (N0CFP)
return DAG.getNode(ISD::FP_EXTEND, VT, N0);
return SDOperand();
}
SDOperand DAGCombiner::visitFNEG(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fneg c1) -> -c1
if (N0CFP)
return DAG.getNode(ISD::FNEG, VT, N0);
// fold (fneg (sub x, y)) -> (sub y, x)
if (N->getOperand(0).getOpcode() == ISD::SUB)
return DAG.getNode(ISD::SUB, VT, N->getOperand(1), N->getOperand(0));
// fold (fneg (fneg x)) -> x
if (N->getOperand(0).getOpcode() == ISD::FNEG)
return N->getOperand(0).getOperand(0);
return SDOperand();
}
SDOperand DAGCombiner::visitFABS(SDNode *N) {
SDOperand N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT::ValueType VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (N0CFP)
return DAG.getNode(ISD::FABS, VT, N0);
// fold (fabs (fabs x)) -> (fabs x)
if (N->getOperand(0).getOpcode() == ISD::FABS)
return N->getOperand(0);
// fold (fabs (fneg x)) -> (fabs x)
if (N->getOperand(0).getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::FABS, VT, N->getOperand(0).getOperand(0));
return SDOperand();
}
SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
SDOperand Chain = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand N2 = N->getOperand(2);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// never taken branch, fold to chain
if (N1C && N1C->isNullValue())
return Chain;
// unconditional branch
if (N1C && N1C->getValue() == 1)
return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
return SDOperand();
}
SDOperand DAGCombiner::visitBRCONDTWOWAY(SDNode *N) {
SDOperand Chain = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
SDOperand N2 = N->getOperand(2);
SDOperand N3 = N->getOperand(3);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// unconditional branch to true mbb
if (N1C && N1C->getValue() == 1)
return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
// unconditional branch to false mbb
if (N1C && N1C->isNullValue())
return DAG.getNode(ISD::BR, MVT::Other, Chain, N3);
return SDOperand();
}
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
// Use SimplifySetCC to simplify SETCC's.
SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
// fold br_cc true, dest -> br dest (unconditional branch)
if (SCCC && SCCC->getValue())
return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
N->getOperand(4));
// fold br_cc false, dest -> unconditional fall through
if (SCCC && SCCC->isNullValue())
return N->getOperand(0);
// fold to a simpler setcc
if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
Simp.getOperand(2), Simp.getOperand(0),
Simp.getOperand(1), N->getOperand(4));
return SDOperand();
}
SDOperand DAGCombiner::visitBRTWOWAY_CC(SDNode *N) {
SDOperand Chain = N->getOperand(0);
SDOperand CCN = N->getOperand(1);
SDOperand LHS = N->getOperand(2);
SDOperand RHS = N->getOperand(3);
SDOperand N4 = N->getOperand(4);
SDOperand N5 = N->getOperand(5);
SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), LHS, RHS,
cast<CondCodeSDNode>(CCN)->get(), false);
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
// fold select_cc lhs, rhs, x, x, cc -> x
if (N4 == N5)
return DAG.getNode(ISD::BR, MVT::Other, Chain, N4);
// fold select_cc true, x, y -> x
if (SCCC && SCCC->getValue())
return DAG.getNode(ISD::BR, MVT::Other, Chain, N4);
// fold select_cc false, x, y -> y
if (SCCC && SCCC->isNullValue())
return DAG.getNode(ISD::BR, MVT::Other, Chain, N5);
// fold to a simpler setcc
if (SCC.Val && SCC.getOpcode() == ISD::SETCC) {
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(SCC.getOperand(2));
Ops.push_back(SCC.getOperand(0));
Ops.push_back(SCC.getOperand(1));
Ops.push_back(N4);
Ops.push_back(N5);
return DAG.getNode(ISD::BRTWOWAY_CC, MVT::Other, Ops);
}
return SDOperand();
}
SDOperand DAGCombiner::visitLOAD(SDNode *N) {
SDOperand Chain = N->getOperand(0);
SDOperand Ptr = N->getOperand(1);
SDOperand SrcValue = N->getOperand(2);
// If this load is directly stored, replace the load value with the stored
// value.
// TODO: Handle store large -> read small portion.
// TODO: Handle TRUNCSTORE/EXTLOAD
if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
Chain.getOperand(1).getValueType() == N->getValueType(0))
return CombineTo(N, Chain.getOperand(1), Chain);
return SDOperand();
}
SDOperand DAGCombiner::visitSTORE(SDNode *N) {
SDOperand Chain = N->getOperand(0);
SDOperand Value = N->getOperand(1);
SDOperand Ptr = N->getOperand(2);
SDOperand SrcValue = N->getOperand(3);
// If this is a store that kills a previous store, remove the previous store.
if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ &&
// Make sure that these stores are the same value type:
// FIXME: we really care that the second store is >= size of the first.
Value.getValueType() == Chain.getOperand(1).getValueType()) {
// Create a new store of Value that replaces both stores.
SDNode *PrevStore = Chain.Val;
if (PrevStore->getOperand(1) == Value) // Same value multiply stored.
return Chain;
SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other,
PrevStore->getOperand(0), Value, Ptr,
SrcValue);
CombineTo(N, NewStore); // Nuke this store.
CombineTo(PrevStore, NewStore); // Nuke the previous store.
return SDOperand(N, 0);
}
// If this is a store of a bit convert, store the input value.
// FIXME: This needs to know that the resultant store does not need a
// higher alignment than the original.
if (0 && Value.getOpcode() == ISD::BIT_CONVERT)
return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0),
Ptr, SrcValue);
return SDOperand();
}
SDOperand DAGCombiner::visitLOCATION(SDNode *N) {
SDOperand Chain = N->getOperand(0);
// Remove redundant locations (last one holds)
if (Chain.getOpcode() == ISD::LOCATION && Chain.hasOneUse()) {
return DAG.getNode(ISD::LOCATION, MVT::Other, Chain.getOperand(0),
N->getOperand(1),
N->getOperand(2),
N->getOperand(3),
N->getOperand(4));
}
return SDOperand();
}
SDOperand DAGCombiner::visitDEBUGLOC(SDNode *N) {
SDOperand Chain = N->getOperand(0);
// Remove redundant debug locations (last one holds)
if (Chain.getOpcode() == ISD::DEBUG_LOC && Chain.hasOneUse()) {
return DAG.getNode(ISD::DEBUG_LOC, MVT::Other, Chain.getOperand(0),
N->getOperand(1),
N->getOperand(2),
N->getOperand(3));
}
return SDOperand();
}
SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If we got a simplified select_cc node back from SimplifySelectCC, then
// break it down into a new SETCC node, and a new SELECT node, and then return
// the SELECT node, since we were called with a SELECT node.
if (SCC.Val) {
// Check to see if we got a select_cc back (to turn into setcc/select).
// Otherwise, just return whatever node we got back, like fabs.
if (SCC.getOpcode() == ISD::SELECT_CC) {
SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4));
WorkList.push_back(SETCC.Val);
return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
SCC.getOperand(3), SETCC);
}
return SCC;
}
return SDOperand();
}
/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
/// are the two values being selected between, see if we can simplify the
/// select.
///
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
SDOperand RHS) {
// If this is a select from two identical things, try to pull the operation
// through the select.
if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
#if 0
std::cerr << "SELECT: ["; LHS.Val->dump();
std::cerr << "] ["; RHS.Val->dump();
std::cerr << "]\n";
#endif
// If this is a load and the token chain is identical, replace the select
// of two loads with a load through a select of the address to load from.
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if ((LHS.getOpcode() == ISD::LOAD ||
LHS.getOpcode() == ISD::EXTLOAD ||
LHS.getOpcode() == ISD::ZEXTLOAD ||
LHS.getOpcode() == ISD::SEXTLOAD) &&
// Token chains must be identical.
LHS.getOperand(0) == RHS.getOperand(0) &&
// If this is an EXTLOAD, the VT's must match.
(LHS.getOpcode() == ISD::LOAD ||
LHS.getOperand(3) == RHS.getOperand(3))) {
// FIXME: this conflates two src values, discarding one. This is not
// the right thing to do, but nothing uses srcvalues now. When they do,
// turn SrcValue into a list of locations.
SDOperand Addr;
if (TheSelect->getOpcode() == ISD::SELECT)
Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(),
TheSelect->getOperand(0), LHS.getOperand(1),
RHS.getOperand(1));
else
Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(),
TheSelect->getOperand(0),
TheSelect->getOperand(1),
LHS.getOperand(1), RHS.getOperand(1),
TheSelect->getOperand(4));
SDOperand Load;
if (LHS.getOpcode() == ISD::LOAD)
Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0),
Addr, LHS.getOperand(2));
else
Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0),
LHS.getOperand(0), Addr, LHS.getOperand(2),
cast<VTSDNode>(LHS.getOperand(3))->getVT());
// Users of the select now use the result of the load.
CombineTo(TheSelect, Load);
// Users of the old loads now use the new load's chain. We know the
// old-load value is dead now.
CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
return true;
}
}
return false;
}
SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
SDOperand N2, SDOperand N3,
ISD::CondCode CC) {
MVT::ValueType VT = N2.getValueType();
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
// Determine if the condition we're dealing with is constant
SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
// fold select_cc true, x, y -> x
if (SCCC && SCCC->getValue())
return N2;
// fold select_cc false, x, y -> y
if (SCCC && SCCC->getValue() == 0)
return N3;
// Check to see if we can simplify the select into an fabs node
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
// Allow either -0.0 or 0.0
if (CFP->getValue() == 0.0) {
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
N0 == N2 && N3.getOpcode() == ISD::FNEG &&
N2 == N3.getOperand(0))
return DAG.getNode(ISD::FABS, VT, N0);
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs
if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::FNEG &&
N2.getOperand(0) == N3)
return DAG.getNode(ISD::FABS, VT, N3);
}
}
// Check to see if we can perform the "gzip trick", transforming
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() &&
MVT::isInteger(N0.getValueType()) &&
MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) {
MVT::ValueType XType = N0.getValueType();
MVT::ValueType AType = N2.getValueType();
if (XType >= AType) {
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
// single-bit constant.
if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
unsigned ShCtV = Log2_64(N2C->getValue());
ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
WorkList.push_back(Shift.Val);
if (XType > AType) {
Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
WorkList.push_back(Shift.Val);
}
return DAG.getNode(ISD::AND, AType, Shift, N2);
}
SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
DAG.getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
WorkList.push_back(Shift.Val);
if (XType > AType) {
Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
WorkList.push_back(Shift.Val);
}
return DAG.getNode(ISD::AND, AType, Shift, N2);
}
}
// fold select C, 16, 0 -> shl C, 4
if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
// Get a SetCC of the condition
// FIXME: Should probably make sure that setcc is legal if we ever have a
// target where it isn't.
SDOperand Temp, SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
WorkList.push_back(SCC.Val);
// cast from setcc result type to select result type
if (AfterLegalize)
Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
else
Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
WorkList.push_back(Temp.Val);
// shl setcc result by log2 n2c
return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
DAG.getConstant(Log2_64(N2C->getValue()),
TLI.getShiftAmountTy()));
}
// Check to see if this is the equivalent of setcc
// FIXME: Turn all of these into setcc if setcc if setcc is legal
// otherwise, go ahead with the folds.
if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
MVT::ValueType XType = N0.getValueType();
if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
if (Res.getValueType() != VT)
Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
return Res;
}
// seteq X, 0 -> srl (ctlz X, log2(size(X)))
if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
TLI.isOperationLegal(ISD::CTLZ, XType)) {
SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
return DAG.getNode(ISD::SRL, XType, Ctlz,
DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
TLI.getShiftAmountTy()));
}
// setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
N0);
SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
DAG.getConstant(~0ULL, XType));
return DAG.getNode(ISD::SRL, XType,
DAG.getNode(ISD::AND, XType, NegN0, NotN0),
DAG.getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
}
// setgt X, -1 -> xor (srl (X, size(X)-1), 1)
if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
DAG.getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
}
}
// Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
MVT::ValueType XType = N0.getValueType();
if (SubC->isNullValue() && MVT::isInteger(XType)) {
SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
DAG.getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
WorkList.push_back(Shift.Val);
WorkList.push_back(Add.Val);
return DAG.getNode(ISD::XOR, XType, Add, Shift);
}
}
}
return SDOperand();
}
SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
SDOperand N1, ISD::CondCode Cond,
bool foldBooleans) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return DAG.getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return DAG.getConstant(1, VT);
}
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
uint64_t C1 = N1C->getValue();
if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) {
uint64_t C0 = N0C->getValue();
// Sign extend the operands if required
if (ISD::isSignedIntSetCC(Cond)) {
C0 = N0C->getSignExtended();
C1 = N1C->getSignExtended();
}
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT);
case ISD::SETNE: return DAG.getConstant(C0 != C1, VT);
case ISD::SETULT: return DAG.getConstant(C0 < C1, VT);
case ISD::SETUGT: return DAG.getConstant(C0 > C1, VT);
case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT);
case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT);
case ISD::SETLT: return DAG.getConstant((int64_t)C0 < (int64_t)C1, VT);
case ISD::SETGT: return DAG.getConstant((int64_t)C0 > (int64_t)C1, VT);
case ISD::SETLE: return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT);
case ISD::SETGE: return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT);
}
} else {
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
if (C1 & (~0ULL << InSize)) {
unsigned VSize = MVT::getSizeInBits(N0.getValueType());
switch (Cond) {
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETEQ: return DAG.getConstant(0, VT);
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETNE: return DAG.getConstant(1, VT);
case ISD::SETGT:
case ISD::SETGE:
// True if the sign bit of C1 is set.
return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT);
case ISD::SETLT:
case ISD::SETLE:
// True if the sign bit of C1 isn't set.
return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT);
default:
break;
}
}
// Otherwise, we can perform the comparison with the low bits.
switch (Cond) {
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE:
return DAG.getSetCC(VT, N0.getOperand(0),
DAG.getConstant(C1, N0.getOperand(0).getValueType()),
Cond);
default:
break; // todo, be more careful with signed comparisons
}
} else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
MVT::ValueType ExtDstTy = N0.getValueType();
unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
// If the extended part has any inconsistent bits, it cannot ever
// compare equal. In other words, they have to be all ones or all
// zeros.
uint64_t ExtBits =
(~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
return DAG.getConstant(Cond == ISD::SETNE, VT);
SDOperand ZextOp;
MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
if (Op0Ty == ExtSrcTy) {
ZextOp = N0.getOperand(0);
} else {
int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
DAG.getConstant(Imm, Op0Ty));
}
WorkList.push_back(ZextOp.Val);
// Otherwise, make this a use of a zext.
return DAG.getSetCC(VT, ZextOp,
DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
ExtDstTy),
Cond);
}
uint64_t MinVal, MaxVal;
unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
if (ISD::isSignedIntSetCC(Cond)) {
MinVal = 1ULL << (OperandBitSize-1);
if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
MaxVal = ~0ULL >> (65-OperandBitSize);
else
MaxVal = 0;
} else {
MinVal = 0;
MaxVal = ~0ULL >> (64-OperandBitSize);
}
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
--C1; // X >= C0 --> X > (C0-1)
return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
(Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
}
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
++C1; // X <= C0 --> X < (C0+1)
return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
(Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
}
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
return DAG.getConstant(0, VT); // X < MIN --> false
// Canonicalize setgt X, Min --> setne X, Min
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
// Canonicalize setlt X, Max --> setne X, Max
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
// If we have setult X, 1, turn it into seteq X, 0
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
ISD::SETEQ);
// If we have setugt X, Max-1, turn it into seteq X, Max
else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
ISD::SETEQ);
// If we have "setcc X, C0", check to see if we can shrink the immediate
// by changing cc.
// SETUGT X, SINTMAX -> SETLT X, 0
if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
C1 == (~0ULL >> (65-OperandBitSize)))
return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
ISD::SETLT);
// FIXME: Implement the rest of these.
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
return DAG.getNode(ISD::SRL, VT, N0,
DAG.getConstant(Log2_64(AndRHS->getValue()),
TLI.getShiftAmountTy()));
}
} else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C1 is a single bit.
if ((C1 & (C1-1)) == 0) {
return DAG.getNode(ISD::SRL, VT, N0,
DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy()));
}
}
}
}
} else if (isa<ConstantSDNode>(N0.Val)) {
// Ensure that the constant occurs on the RHS.
return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
}
if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val))
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
double C0 = N0C->getValue(), C1 = N1C->getValue();
switch (Cond) {
default: break; // FIXME: Implement the rest of these!
case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT);
case ISD::SETNE: return DAG.getConstant(C0 != C1, VT);
case ISD::SETLT: return DAG.getConstant(C0 < C1, VT);
case ISD::SETGT: return DAG.getConstant(C0 > C1, VT);
case ISD::SETLE: return DAG.getConstant(C0 <= C1, VT);
case ISD::SETGE: return DAG.getConstant(C0 >= C1, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
}
if (N0 == N1) {
// We can always fold X == Y for integer setcc's.
if (MVT::isInteger(N0.getValueType()))
return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
unsigned UOF = ISD::getUnorderedFlavor(Cond);
if (UOF == 2) // FP operators that are undefined on NaNs.
return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
return DAG.getConstant(UOF, VT);
// Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
// if it is not already.
ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
if (NewCond != Cond)
return DAG.getSetCC(VT, N0, N1, NewCond);
}
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
MVT::isInteger(N0.getValueType())) {
if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
N0.getOpcode() == ISD::XOR) {
// Simplify (X+Y) == (X+Z) --> Y == Z
if (N0.getOpcode() == N1.getOpcode()) {
if (N0.getOperand(0) == N1.getOperand(0))
return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
if (N0.getOperand(1) == N1.getOperand(1))
return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
if (isCommutativeBinOp(N0.getOpcode())) {
// If X op Y == Y op X, try other combinations.
if (N0.getOperand(0) == N1.getOperand(1))
return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
if (N0.getOperand(1) == N1.getOperand(0))
return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
}
}
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. Common for condcodes.
if (N0.getOpcode() == ISD::XOR)
if (ConstantSDNode *XORC = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
// If we know that all of the inverted bits are zero, don't bother
// performing the inversion.
if (TLI.MaskedValueIsZero(N0.getOperand(0), ~XORC->getValue()))
return DAG.getSetCC(VT, N0.getOperand(0),
DAG.getConstant(XORC->getValue()^RHSC->getValue(),
N0.getValueType()), Cond);
}
// Simplify (X+Z) == X --> Z == 0
if (N0.getOperand(0) == N1)
return DAG.getSetCC(VT, N0.getOperand(1),
DAG.getConstant(0, N0.getValueType()), Cond);
if (N0.getOperand(1) == N1) {
if (isCommutativeBinOp(N0.getOpcode()))
return DAG.getSetCC(VT, N0.getOperand(0),
DAG.getConstant(0, N0.getValueType()), Cond);
else {
assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
// (Z-X) == X --> Z == X<<1
SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
N1,
DAG.getConstant(1,TLI.getShiftAmountTy()));
WorkList.push_back(SH.Val);
return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
}
}
}
if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
N1.getOpcode() == ISD::XOR) {
// Simplify X == (X+Z) --> Z == 0
if (N1.getOperand(0) == N0) {
return DAG.getSetCC(VT, N1.getOperand(1),
DAG.getConstant(0, N1.getValueType()), Cond);
} else if (N1.getOperand(1) == N0) {
if (isCommutativeBinOp(N1.getOpcode())) {
return DAG.getSetCC(VT, N1.getOperand(0),
DAG.getConstant(0, N1.getValueType()), Cond);
} else {
assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
// X == (Z-X) --> X<<1 == Z
SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
DAG.getConstant(1,TLI.getShiftAmountTy()));
WorkList.push_back(SH.Val);
return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
}
}
}
}
// Fold away ALL boolean setcc's.
SDOperand Temp;
if (N0.getValueType() == MVT::i1 && foldBooleans) {
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: // X == Y -> (X^Y)^1
Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
WorkList.push_back(Temp.Val);
break;
case ISD::SETNE: // X != Y --> (X^Y)
N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
break;
case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
WorkList.push_back(Temp.Val);
break;
case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
WorkList.push_back(Temp.Val);
break;
case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
WorkList.push_back(Temp.Val);
break;
case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
break;
}
if (VT != MVT::i1) {
WorkList.push_back(N0.Val);
// FIXME: If running after legalize, we probably can't do this.
N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
}
return N0;
}
// Could not fold it.
return SDOperand();
}
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
MVT::ValueType VT = N->getValueType(0);
// Check to see if we can do this.
if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
return SDOperand(); // BuildSDIV only operates on i32 or i64
if (!TLI.isOperationLegal(ISD::MULHS, VT))
return SDOperand(); // Make sure the target supports MULHS.
int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
DAG.getConstant(magics.m, VT));
// If d > 0 and m < 0, add the numerator
if (d > 0 && magics.m < 0) {
Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
WorkList.push_back(Q.Val);
}
// If d < 0 and m > 0, subtract the numerator.
if (d < 0 && magics.m > 0) {
Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
WorkList.push_back(Q.Val);
}
// Shift right algebraic if shift value is nonzero
if (magics.s > 0) {
Q = DAG.getNode(ISD::SRA, VT, Q,
DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
WorkList.push_back(Q.Val);
}
// Extract the sign bit and add it to the quotient
SDOperand T =
DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
TLI.getShiftAmountTy()));
WorkList.push_back(T.Val);
return DAG.getNode(ISD::ADD, VT, Q, T);
}
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
MVT::ValueType VT = N->getValueType(0);
// Check to see if we can do this.
if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
return SDOperand(); // BuildUDIV only operates on i32 or i64
if (!TLI.isOperationLegal(ISD::MULHU, VT))
return SDOperand(); // Make sure the target supports MULHU.
uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
DAG.getConstant(magics.m, VT));
WorkList.push_back(Q.Val);
if (magics.a == 0) {
return DAG.getNode(ISD::SRL, VT, Q,
DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
} else {
SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
WorkList.push_back(NPQ.Val);
NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
DAG.getConstant(1, TLI.getShiftAmountTy()));
WorkList.push_back(NPQ.Val);
NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
WorkList.push_back(NPQ.Val);
return DAG.getNode(ISD::SRL, VT, NPQ,
DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
}
}
// SelectionDAG::Combine - This is the entry point for the file.
//
void SelectionDAG::Combine(bool RunningAfterLegalize) {
/// run - This is the main entry point to this class.
///
DAGCombiner(*this).Run(RunningAfterLegalize);
}