llvm-6502/lib/Target/X86/X86MCCodeEmitter.cpp
Chris Lattner 1ac23b1038 start adding MRMDestMem, which requires memory form mod/rm encoding
to start limping.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95350 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-05 02:18:40 +00:00

384 lines
12 KiB
C++

//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-emitter"
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
const TargetMachine &TM;
const TargetInstrInfo &TII;
bool Is64BitMode;
public:
X86MCCodeEmitter(TargetMachine &tm)
: TM(tm), TII(*TM.getInstrInfo()) {
// FIXME: Get this from the right place.
Is64BitMode = false;
}
~X86MCCodeEmitter() {}
static unsigned GetX86RegNum(const MCOperand &MO) {
return X86RegisterInfo::getX86RegNum(MO.getReg());
}
void EmitByte(unsigned char C, raw_ostream &OS) const {
OS << (char)C;
}
void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
// Output the constant in little endian byte order.
for (unsigned i = 0; i != Size; ++i) {
EmitByte(Val & 255, OS);
Val >>= 8;
}
}
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
raw_ostream &OS) const {
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
}
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField, intptr_t PCAdj,
raw_ostream &OS) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
};
} // end anonymous namespace
MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
TargetMachine &TM) {
return new X86MCCodeEmitter(TM);
}
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
intptr_t PCAdj,
raw_ostream &OS) const {
const MCOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MCOperand *DispForReloc = 0;
// Figure out what sort of displacement we have to handle here.
if (Op3.isImm()) {
DispVal = Op3.getImm();
} else {
#if 0
if (Op3.isGlobal()) {
DispForReloc = &Op3;
} else if (Op3.isSymbol()) {
DispForReloc = &Op3;
} else if (Op3.isCPI()) {
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
DispVal += Op3.getOffset();
}
} else {
assert(Op3.isJTI());
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
}
#endif
}
const MCOperand &Base = MI.getOperand(Op);
//const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// Is a SIB byte needed?
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
IndexReg.getReg() == 0 &&
(BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
// Emit special case [disp32] encoding
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
#endif
} else {
unsigned BaseRegNo = GetX86RegNum(Base);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
} else if (!DispForReloc && isDisp8(DispVal)) {
// Emit the disp8 encoding... [REG+disp8]
EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
EmitConstant(DispVal, 1, OS);
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
#endif
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispForReloc) {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispVal == 0 && BaseReg != X86::EBP) {
// Emit no displacement ModR/M byte
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
} else if (isDisp8(DispVal)) {
// Emit the disp8 encoding.
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
}
#if 0
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
// Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
IndexRegNo = 4;
emitSIBByte(SS, IndexRegNo, 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg);
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
emitSIBByte(SS, IndexRegNo, BaseRegNo);
}
// Do we need to output a displacement?
if (ForceDisp8) {
emitConstant(DispVal, 1);
} else if (DispVal != 0 || ForceDisp32) {
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
}
#endif
}
}
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
unsigned TSFlags = Desc.TSFlags;
// FIXME: We should emit the prefixes in exactly the same order as GAS does,
// in order to provide diffability.
// Emit the lock opcode prefix as needed.
if (TSFlags & X86II::LOCK)
EmitByte(0xF0, OS);
// Emit segment override opcode prefix as needed.
switch (TSFlags & X86II::SegOvrMask) {
default: assert(0 && "Invalid segment!");
case 0: break; // No segment override!
case X86II::FS:
EmitByte(0x64, OS);
break;
case X86II::GS:
EmitByte(0x65, OS);
break;
}
// Emit the repeat opcode prefix as needed.
if ((TSFlags & X86II::Op0Mask) == X86II::REP)
EmitByte(0xF3, OS);
// Emit the operand size opcode prefix as needed.
if (TSFlags & X86II::OpSize)
EmitByte(0x66, OS);
// Emit the address size opcode prefix as needed.
if (TSFlags & X86II::AdSize)
EmitByte(0x67, OS);
bool Need0FPrefix = false;
switch (TSFlags & X86II::Op0Mask) {
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
case X86II::REP: break; // already handled.
case X86II::TB: // Two-byte opcode prefix
case X86II::T8: // 0F 38
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
case X86II::TF: // F2 0F 38
EmitByte(0xF2, OS);
Need0FPrefix = true;
break;
case X86II::XS: // F3 0F
EmitByte(0xF3, OS);
Need0FPrefix = true;
break;
case X86II::XD: // F2 0F
EmitByte(0xF2, OS);
Need0FPrefix = true;
break;
case X86II::D8: EmitByte(0xD8, OS); break;
case X86II::D9: EmitByte(0xD9, OS); break;
case X86II::DA: EmitByte(0xDA, OS); break;
case X86II::DB: EmitByte(0xDB, OS); break;
case X86II::DC: EmitByte(0xDC, OS); break;
case X86II::DD: EmitByte(0xDD, OS); break;
case X86II::DE: EmitByte(0xDE, OS); break;
case X86II::DF: EmitByte(0xDF, OS); break;
}
// Handle REX prefix.
#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
if (Is64BitMode) {
if (unsigned REX = X86InstrInfo::determineREX(MI))
EmitByte(0x40 | REX, OS);
}
#endif
// 0x0F escape code must be emitted just before the opcode.
if (Need0FPrefix)
EmitByte(0x0F, OS);
// FIXME: Pull this up into previous switch if REX can be moved earlier.
switch (TSFlags & X86II::Op0Mask) {
case X86II::TF: // F2 0F 38
case X86II::T8: // 0F 38
EmitByte(0x38, OS);
break;
case X86II::TA: // 0F 3A
EmitByte(0x3A, OS);
break;
}
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
++CurOp;
else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
--NumOps;
// FIXME: Can we kill off MRMInitReg??
unsigned char BaseOpcode = X86InstrInfo::getBaseOpcodeFor(Desc);
switch (TSFlags & X86II::FormMask) {
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
case X86II::RawFrm: {
EmitByte(BaseOpcode, OS);
if (CurOp == NumOps)
break;
assert(0 && "Unimpl RawFrm expr");
break;
}
case X86II::AddRegFrm: {
EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
if (CurOp == NumOps)
break;
const MCOperand &MO1 = MI.getOperand(CurOp++);
if (MO1.isImm()) {
unsigned Size = X86InstrInfo::sizeOfImm(&Desc);
EmitConstant(MO1.getImm(), Size, OS);
break;
}
assert(0 && "Unimpl AddRegFrm expr");
break;
}
case X86II::MRMDestReg:
EmitByte(BaseOpcode, OS);
EmitRegModRMByte(MI.getOperand(CurOp),
GetX86RegNum(MI.getOperand(CurOp+1)), OS);
CurOp += 2;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86InstrInfo::sizeOfImm(&Desc), OS);
break;
case X86II::MRMDestMem:
EmitByte(BaseOpcode, OS);
EmitMemModRMByte(MI, CurOp,
GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
0, OS);
CurOp += X86AddrNumOperands + 1;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86InstrInfo::sizeOfImm(&Desc), OS);
break;
}
#ifndef NDEBUG
if (!Desc.isVariadic() && CurOp != NumOps) {
errs() << "Cannot encode all operands of: ";
MI.dump();
errs() << '\n';
abort();
}
#endif
}