llvm-6502/include/llvm/ADT/SmallVector.h
Evan Cheng e6ffe61c84 This causes some random crashes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29534 91177308-0d34-0410-b5e6-96231b3b80d8
2006-08-05 17:31:00 +00:00

221 lines
6.4 KiB
C++

//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLVECTOR_H
#define LLVM_ADT_SMALLVECTOR_H
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
namespace llvm {
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold. This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N>
class SmallVector {
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
// don't want it to be automatically run, so we need to represent the space as
// something else. An array of char would work great, but might not be
// aligned sufficiently. Instead, we either use GCC extensions, or some
// number of union instances for the space, which guarantee maximal alignment.
union U {
double D;
long double LD;
long long L;
void *P;
};
/// InlineElts - These are the 'N' elements that are stored inline in the body
/// of the vector
U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U)];
T *Begin, *End, *Capacity;
public:
// Default ctor - Initialize to empty.
SmallVector() : Begin((T*)InlineElts), End(Begin), Capacity(Begin+N) {
}
SmallVector(const SmallVector &RHS) {
unsigned RHSSize = RHS.size();
Begin = (T*)InlineElts;
// Doesn't fit in the small case? Allocate space.
if (RHSSize > N) {
End = Capacity = Begin;
grow(RHSSize);
}
End = Begin+RHSSize;
Capacity = Begin+N;
std::uninitialized_copy(RHS.begin(), RHS.end(), Begin);
}
~SmallVector() {
// Destroy the constructed elements in the vector.
for (iterator I = Begin, E = End; I != E; ++I)
I->~T();
// If this wasn't grown from the inline copy, deallocate the old space.
if ((void*)Begin != (void*)InlineElts)
delete[] (char*)Begin;
}
typedef size_t size_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
bool empty() const { return Begin == End; }
size_type size() const { return End-Begin; }
iterator begin() { return Begin; }
const_iterator begin() const { return Begin; }
iterator end() { return End; }
const_iterator end() const { return End; }
reference operator[](unsigned idx) {
assert(idx < size() && "out of range reference!");
return Begin[idx];
}
const_reference operator[](unsigned idx) const {
assert(idx < size() && "out of range reference!");
return Begin[idx];
}
reference back() {
assert(!empty() && "SmallVector is empty!");
return end()[-1];
}
const_reference back() const {
assert(!empty() && "SmallVector is empty!");
return end()[-1];
}
void push_back(const_reference Elt) {
if (End < Capacity) {
Retry:
new (End) T(Elt);
++End;
return;
}
grow();
goto Retry;
}
void pop_back() {
assert(!empty() && "SmallVector is empty!");
--End;
End->~T();
}
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
void append(in_iter in_start, in_iter in_end) {
unsigned NumInputs = std::distance(in_start, in_end);
// Grow allocated space if needed.
if (End+NumInputs > Capacity)
grow(size()+NumInputs);
// Copy the new elements over.
std::uninitialized_copy(in_start, in_end, End);
End += NumInputs;
}
const SmallVector &operator=(const SmallVector &RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
unsigned RHSSize = RHS.size();
unsigned CurSize = size();
if (CurSize >= RHSSize) {
// Assign common elements.
std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
// Destroy excess elements.
for (unsigned i = RHSSize; i != CurSize; ++i)
Begin[i].~T();
// Trim.
End = Begin + RHSSize;
return *this;
}
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
if (Capacity-Begin < RHSSize) {
// Destroy current elements.
for (iterator I = Begin, E = End; I != E; ++I)
I->~T();
End = Begin;
CurSize = 0;
grow(RHSSize);
} else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements.
std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
}
// Copy construct the new elements in place.
std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
// Set end.
End = Begin+RHSSize;
}
private:
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const {
return (void*)Begin == (void*)InlineElts;
}
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(unsigned MinSize = 0) {
unsigned CurCapacity = Capacity-Begin;
unsigned CurSize = size();
unsigned NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize)
NewCapacity = MinSize;
T *NewElts = reinterpret_cast<T*>(new char[NewCapacity*sizeof(T)]);
// Copy the elements over.
std::uninitialized_copy(Begin, End, NewElts);
// Destroy the original elements.
for (iterator I = Begin, E = End; I != E; ++I)
I->~T();
// If this wasn't grown from the inline copy, deallocate the old space.
if (!isSmall())
delete[] (char*)Begin;
Begin = NewElts;
End = NewElts+CurSize;
Capacity = Begin+NewCapacity;
}
};
} // End llvm namespace
#endif