llvm-6502/test/CodeGen/R600/store.ll
Matt Arsenault f44ed0919c Add target hook to allow merging stores of nonzero constants
On GPU targets, materializing constants is cheap and stores are
expensive, so only doing this for zero vectors was silly.

Most of the new testcases aren't optimally merged, and are for
later improvements.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238108 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-24 00:51:27 +00:00

370 lines
9.9 KiB
LLVM

; RUN: llc -march=amdgcn -mcpu=verde -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s
; RUN: llc -march=amdgcn -mcpu=tonga -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s
; RUN: llc -march=r600 -mcpu=redwood < %s | FileCheck -check-prefix=EG -check-prefix=FUNC %s
; RUN: llc -march=r600 -mcpu=cayman < %s | FileCheck -check-prefix=CM -check-prefix=FUNC %s
;===------------------------------------------------------------------------===;
; Global Address Space
;===------------------------------------------------------------------------===;
; FUNC-LABEL: {{^}}store_i1:
; EG: MEM_RAT MSKOR
; SI: buffer_store_byte
define void @store_i1(i1 addrspace(1)* %out) {
entry:
store i1 true, i1 addrspace(1)* %out
ret void
}
; i8 store
; FUNC-LABEL: {{^}}store_i8:
; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X
; IG 0: Get the byte index and truncate the value
; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x
; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x
; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y
; EG-NEXT: 3(4.203895e-45), 255(3.573311e-43)
; IG 1: Truncate the calculated the shift amount for the mask
; IG 2: Shift the value and the mask
; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]]
; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]]
; EG-NEXT: 255
; IG 3: Initialize the Y and Z channels to zero
; XXX: An optimal scheduler should merge this into one of the prevous IGs.
; EG: MOV T[[RW_GPR]].Y, 0.0
; EG: MOV * T[[RW_GPR]].Z, 0.0
; SI: buffer_store_byte
define void @store_i8(i8 addrspace(1)* %out, i8 %in) {
entry:
store i8 %in, i8 addrspace(1)* %out
ret void
}
; i16 store
; FUNC-LABEL: {{^}}store_i16:
; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X
; IG 0: Get the byte index and truncate the value
; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x
; EG-NEXT: 3(4.203895e-45),
; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x
; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y
; EG-NEXT: 3(4.203895e-45), 65535(9.183409e-41)
; IG 1: Truncate the calculated the shift amount for the mask
; IG 2: Shift the value and the mask
; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]]
; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]]
; EG-NEXT: 65535
; IG 3: Initialize the Y and Z channels to zero
; XXX: An optimal scheduler should merge this into one of the prevous IGs.
; EG: MOV T[[RW_GPR]].Y, 0.0
; EG: MOV * T[[RW_GPR]].Z, 0.0
; SI: buffer_store_short
define void @store_i16(i16 addrspace(1)* %out, i16 %in) {
entry:
store i16 %in, i16 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_v2i8:
; EG: MEM_RAT MSKOR
; EG-NOT: MEM_RAT MSKOR
; SI: buffer_store_byte
; SI: buffer_store_byte
define void @store_v2i8(<2 x i8> addrspace(1)* %out, <2 x i32> %in) {
entry:
%0 = trunc <2 x i32> %in to <2 x i8>
store <2 x i8> %0, <2 x i8> addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_v2i16:
; EG: MEM_RAT_CACHELESS STORE_RAW
; CM: MEM_RAT_CACHELESS STORE_DWORD
; SI: buffer_store_short
; SI: buffer_store_short
define void @store_v2i16(<2 x i16> addrspace(1)* %out, <2 x i32> %in) {
entry:
%0 = trunc <2 x i32> %in to <2 x i16>
store <2 x i16> %0, <2 x i16> addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_v4i8:
; EG: MEM_RAT_CACHELESS STORE_RAW
; CM: MEM_RAT_CACHELESS STORE_DWORD
; SI: buffer_store_byte
; SI: buffer_store_byte
; SI: buffer_store_byte
; SI: buffer_store_byte
define void @store_v4i8(<4 x i8> addrspace(1)* %out, <4 x i32> %in) {
entry:
%0 = trunc <4 x i32> %in to <4 x i8>
store <4 x i8> %0, <4 x i8> addrspace(1)* %out
ret void
}
; floating-point store
; FUNC-LABEL: {{^}}store_f32:
; EG: MEM_RAT_CACHELESS STORE_RAW T{{[0-9]+\.X, T[0-9]+\.X}}, 1
; CM: MEM_RAT_CACHELESS STORE_DWORD T{{[0-9]+\.X, T[0-9]+\.X}}
; SI: buffer_store_dword
define void @store_f32(float addrspace(1)* %out, float %in) {
store float %in, float addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_v4i16:
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG-NOT: MEM_RAT MSKOR
; SI: buffer_store_short
; SI: buffer_store_short
; SI: buffer_store_short
; SI: buffer_store_short
; SI-NOT: buffer_store_byte
define void @store_v4i16(<4 x i16> addrspace(1)* %out, <4 x i32> %in) {
entry:
%0 = trunc <4 x i32> %in to <4 x i16>
store <4 x i16> %0, <4 x i16> addrspace(1)* %out
ret void
}
; vec2 floating-point stores
; FUNC-LABEL: {{^}}store_v2f32:
; EG: MEM_RAT_CACHELESS STORE_RAW
; CM: MEM_RAT_CACHELESS STORE_DWORD
; SI: buffer_store_dwordx2
define void @store_v2f32(<2 x float> addrspace(1)* %out, float %a, float %b) {
entry:
%0 = insertelement <2 x float> <float 0.0, float 0.0>, float %a, i32 0
%1 = insertelement <2 x float> %0, float %b, i32 1
store <2 x float> %1, <2 x float> addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_v4i32:
; EG: MEM_RAT_CACHELESS STORE_RAW
; EG-NOT: MEM_RAT_CACHELESS STORE_RAW
; CM: MEM_RAT_CACHELESS STORE_DWORD
; CM-NOT: MEM_RAT_CACHELESS STORE_DWORD
; SI: buffer_store_dwordx4
define void @store_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> %in) {
entry:
store <4 x i32> %in, <4 x i32> addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_i64_i8:
; EG: MEM_RAT MSKOR
; SI: buffer_store_byte
define void @store_i64_i8(i8 addrspace(1)* %out, i64 %in) {
entry:
%0 = trunc i64 %in to i8
store i8 %0, i8 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}store_i64_i16:
; EG: MEM_RAT MSKOR
; SI: buffer_store_short
define void @store_i64_i16(i16 addrspace(1)* %out, i64 %in) {
entry:
%0 = trunc i64 %in to i16
store i16 %0, i16 addrspace(1)* %out
ret void
}
;===------------------------------------------------------------------------===;
; Local Address Space
;===------------------------------------------------------------------------===;
; FUNC-LABEL: {{^}}store_local_i1:
; EG: LDS_BYTE_WRITE
; SI: ds_write_b8
define void @store_local_i1(i1 addrspace(3)* %out) {
entry:
store i1 true, i1 addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_i8:
; EG: LDS_BYTE_WRITE
; SI: ds_write_b8
define void @store_local_i8(i8 addrspace(3)* %out, i8 %in) {
store i8 %in, i8 addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_i16:
; EG: LDS_SHORT_WRITE
; SI: ds_write_b16
define void @store_local_i16(i16 addrspace(3)* %out, i16 %in) {
store i16 %in, i16 addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_v2i16:
; EG: LDS_WRITE
; CM: LDS_WRITE
; SI: ds_write_b16
; SI: ds_write_b16
define void @store_local_v2i16(<2 x i16> addrspace(3)* %out, <2 x i16> %in) {
entry:
store <2 x i16> %in, <2 x i16> addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_v4i8:
; EG: LDS_WRITE
; CM: LDS_WRITE
; SI: ds_write_b8
; SI: ds_write_b8
; SI: ds_write_b8
; SI: ds_write_b8
define void @store_local_v4i8(<4 x i8> addrspace(3)* %out, <4 x i8> %in) {
entry:
store <4 x i8> %in, <4 x i8> addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_v2i32:
; EG: LDS_WRITE
; EG: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE
; SI: ds_write_b64
define void @store_local_v2i32(<2 x i32> addrspace(3)* %out, <2 x i32> %in) {
entry:
store <2 x i32> %in, <2 x i32> addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_v4i32:
; EG: LDS_WRITE
; EG: LDS_WRITE
; EG: LDS_WRITE
; EG: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE
; SI: ds_write_b32
; SI: ds_write_b32
; SI: ds_write_b32
; SI: ds_write_b32
define void @store_local_v4i32(<4 x i32> addrspace(3)* %out, <4 x i32> %in) {
entry:
store <4 x i32> %in, <4 x i32> addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_i64_i8:
; EG: LDS_BYTE_WRITE
; SI: ds_write_b8
define void @store_local_i64_i8(i8 addrspace(3)* %out, i64 %in) {
entry:
%0 = trunc i64 %in to i8
store i8 %0, i8 addrspace(3)* %out
ret void
}
; FUNC-LABEL: {{^}}store_local_i64_i16:
; EG: LDS_SHORT_WRITE
; SI: ds_write_b16
define void @store_local_i64_i16(i16 addrspace(3)* %out, i64 %in) {
entry:
%0 = trunc i64 %in to i16
store i16 %0, i16 addrspace(3)* %out
ret void
}
; The stores in this function are combined by the optimizer to create a
; 64-bit store with 32-bit alignment. This is legal for SI and the legalizer
; should not try to split the 64-bit store back into 2 32-bit stores.
;
; Evergreen / Northern Islands don't support 64-bit stores yet, so there should
; be two 32-bit stores.
; FUNC-LABEL: {{^}}vecload2:
; EG: MEM_RAT_CACHELESS STORE_RAW
; CM: MEM_RAT_CACHELESS STORE_DWORD
; SI: buffer_store_dwordx2
define void @vecload2(i32 addrspace(1)* nocapture %out, i32 addrspace(2)* nocapture %mem) #0 {
entry:
%0 = load i32, i32 addrspace(2)* %mem, align 4
%arrayidx1.i = getelementptr inbounds i32, i32 addrspace(2)* %mem, i64 1
%1 = load i32, i32 addrspace(2)* %arrayidx1.i, align 4
store i32 %0, i32 addrspace(1)* %out, align 4
%arrayidx1 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1
store i32 %1, i32 addrspace(1)* %arrayidx1, align 4
ret void
}
attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
; When i128 was a legal type this program generated cannot select errors:
; FUNC-LABEL: {{^}}"i128-const-store":
; FIXME: We should be able to to this with one store instruction
; EG: STORE_RAW
; EG: STORE_RAW
; EG: STORE_RAW
; EG: STORE_RAW
; CM: STORE_DWORD
; CM: STORE_DWORD
; CM: STORE_DWORD
; CM: STORE_DWORD
; SI: buffer_store_dwordx4
define void @i128-const-store(i32 addrspace(1)* %out) {
entry:
store i32 1, i32 addrspace(1)* %out, align 4
%arrayidx2 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1
store i32 1, i32 addrspace(1)* %arrayidx2, align 4
%arrayidx4 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 2
store i32 2, i32 addrspace(1)* %arrayidx4, align 4
%arrayidx6 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 3
store i32 2, i32 addrspace(1)* %arrayidx6, align 4
ret void
}