llvm-6502/include/llvm/CodeGen/ScheduleDAGInstrs.h
2013-09-28 13:42:22 +00:00

260 lines
9.8 KiB
C++

//==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleDAGInstrs class, which implements
// scheduling for a MachineInstr-based dependency graph.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/SparseMultiSet.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetRegisterInfo.h"
namespace llvm {
class MachineFrameInfo;
class MachineLoopInfo;
class MachineDominatorTree;
class LiveIntervals;
class RegPressureTracker;
class PressureDiffs;
/// An individual mapping from virtual register number to SUnit.
struct VReg2SUnit {
unsigned VirtReg;
SUnit *SU;
VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {}
unsigned getSparseSetIndex() const {
return TargetRegisterInfo::virtReg2Index(VirtReg);
}
};
/// Record a physical register access.
/// For non data-dependent uses, OpIdx == -1.
struct PhysRegSUOper {
SUnit *SU;
int OpIdx;
unsigned Reg;
PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
unsigned getSparseSetIndex() const { return Reg; }
};
/// Use a SparseMultiSet to track physical registers. Storage is only
/// allocated once for the pass. It can be cleared in constant time and reused
/// without any frees.
typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t>
Reg2SUnitsMap;
/// Use SparseSet as a SparseMap by relying on the fact that it never
/// compares ValueT's, only unsigned keys. This allows the set to be cleared
/// between scheduling regions in constant time as long as ValueT does not
/// require a destructor.
typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
/// Track local uses of virtual registers. These uses are gathered by the DAG
/// builder and may be consulted by the scheduler to avoid iterating an entire
/// vreg use list.
typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap;
/// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
/// MachineInstrs.
class ScheduleDAGInstrs : public ScheduleDAG {
protected:
const MachineLoopInfo &MLI;
const MachineDominatorTree &MDT;
const MachineFrameInfo *MFI;
/// Live Intervals provides reaching defs in preRA scheduling.
LiveIntervals *LIS;
/// TargetSchedModel provides an interface to the machine model.
TargetSchedModel SchedModel;
/// isPostRA flag indicates vregs cannot be present.
bool IsPostRA;
/// The standard DAG builder does not normally include terminators as DAG
/// nodes because it does not create the necessary dependencies to prevent
/// reordering. A specialized scheduler can overide
/// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
/// it has taken responsibility for scheduling the terminator correctly.
bool CanHandleTerminators;
/// State specific to the current scheduling region.
/// ------------------------------------------------
/// The block in which to insert instructions
MachineBasicBlock *BB;
/// The beginning of the range to be scheduled.
MachineBasicBlock::iterator RegionBegin;
/// The end of the range to be scheduled.
MachineBasicBlock::iterator RegionEnd;
/// Instructions in this region (distance(RegionBegin, RegionEnd)).
unsigned NumRegionInstrs;
/// After calling BuildSchedGraph, each machine instruction in the current
/// scheduling region is mapped to an SUnit.
DenseMap<MachineInstr*, SUnit*> MISUnitMap;
/// After calling BuildSchedGraph, each vreg used in the scheduling region
/// is mapped to a set of SUnits. These include all local vreg uses, not
/// just the uses for a singly defined vreg.
VReg2UseMap VRegUses;
/// State internal to DAG building.
/// -------------------------------
/// Defs, Uses - Remember where defs and uses of each register are as we
/// iterate upward through the instructions. This is allocated here instead
/// of inside BuildSchedGraph to avoid the need for it to be initialized and
/// destructed for each block.
Reg2SUnitsMap Defs;
Reg2SUnitsMap Uses;
/// Track the last instruction in this region defining each virtual register.
VReg2SUnitMap VRegDefs;
/// PendingLoads - Remember where unknown loads are after the most recent
/// unknown store, as we iterate. As with Defs and Uses, this is here
/// to minimize construction/destruction.
std::vector<SUnit *> PendingLoads;
/// DbgValues - Remember instruction that precedes DBG_VALUE.
/// These are generated by buildSchedGraph but persist so they can be
/// referenced when emitting the final schedule.
typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
DbgValueVector;
DbgValueVector DbgValues;
MachineInstr *FirstDbgValue;
public:
explicit ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo &mli,
const MachineDominatorTree &mdt,
bool IsPostRAFlag,
LiveIntervals *LIS = 0);
virtual ~ScheduleDAGInstrs() {}
/// \brief Expose LiveIntervals for use in DAG mutators and such.
LiveIntervals *getLIS() const { return LIS; }
/// \brief Get the machine model for instruction scheduling.
const TargetSchedModel *getSchedModel() const { return &SchedModel; }
/// \brief Resolve and cache a resolved scheduling class for an SUnit.
const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
return SU->SchedClass;
}
/// begin - Return an iterator to the top of the current scheduling region.
MachineBasicBlock::iterator begin() const { return RegionBegin; }
/// end - Return an iterator to the bottom of the current scheduling region.
MachineBasicBlock::iterator end() const { return RegionEnd; }
/// newSUnit - Creates a new SUnit and return a ptr to it.
SUnit *newSUnit(MachineInstr *MI);
/// getSUnit - Return an existing SUnit for this MI, or NULL.
SUnit *getSUnit(MachineInstr *MI) const;
/// startBlock - Prepare to perform scheduling in the given block.
virtual void startBlock(MachineBasicBlock *BB);
/// finishBlock - Clean up after scheduling in the given block.
virtual void finishBlock();
/// Initialize the scheduler state for the next scheduling region.
virtual void enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs);
/// Notify that the scheduler has finished scheduling the current region.
virtual void exitRegion();
/// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
/// input.
void buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker = 0,
PressureDiffs *PDiffs = 0);
/// addSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier. We want to
/// make sure instructions which define registers that are either used by
/// the terminator or are live-out are properly scheduled. This is
/// especially important when the definition latency of the return value(s)
/// are too high to be hidden by the branch or when the liveout registers
/// used by instructions in the fallthrough block.
void addSchedBarrierDeps();
/// schedule - Order nodes according to selected style, filling
/// in the Sequence member.
///
/// Typically, a scheduling algorithm will implement schedule() without
/// overriding enterRegion() or exitRegion().
virtual void schedule() = 0;
/// finalizeSchedule - Allow targets to perform final scheduling actions at
/// the level of the whole MachineFunction. By default does nothing.
virtual void finalizeSchedule() {}
virtual void dumpNode(const SUnit *SU) const;
/// Return a label for a DAG node that points to an instruction.
virtual std::string getGraphNodeLabel(const SUnit *SU) const;
/// Return a label for the region of code covered by the DAG.
virtual std::string getDAGName() const;
protected:
void initSUnits();
void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
};
/// newSUnit - Creates a new SUnit and return a ptr to it.
inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
#ifndef NDEBUG
const SUnit *Addr = SUnits.empty() ? 0 : &SUnits[0];
#endif
SUnits.push_back(SUnit(MI, (unsigned)SUnits.size()));
assert((Addr == 0 || Addr == &SUnits[0]) &&
"SUnits std::vector reallocated on the fly!");
SUnits.back().OrigNode = &SUnits.back();
return &SUnits.back();
}
/// getSUnit - Return an existing SUnit for this MI, or NULL.
inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
if (I == MISUnitMap.end())
return 0;
return I->second;
}
} // namespace llvm
#endif