mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 04:08:07 +00:00
//===- README.txt - Notes for improving PowerPC-specific code gen ---------===// TODO: * gpr0 allocation * implement do-loop -> bdnz transform * implement powerpc-64 for darwin ===-------------------------------------------------------------------------=== Support 'update' load/store instructions. These are cracked on the G5, but are still a codesize win. ===-------------------------------------------------------------------------=== Teach the .td file to pattern match PPC::BR_COND to appropriate bc variant, so we don't have to always run the branch selector for small functions. ===-------------------------------------------------------------------------=== * Codegen this: void test2(int X) { if (X == 0x12345678) bar(); } as: xoris r0,r3,0x1234 cmplwi cr0,r0,0x5678 beq cr0,L6 not: lis r2, 4660 ori r2, r2, 22136 cmpw cr0, r3, r2 bne .LBB_test2_2 ===-------------------------------------------------------------------------=== Lump the constant pool for each function into ONE pic object, and reference pieces of it as offsets from the start. For functions like this (contrived to have lots of constants obviously): double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } We generate: _X: lis r2, ha16(.CPI_X_0) lfd f0, lo16(.CPI_X_0)(r2) lis r2, ha16(.CPI_X_1) lfd f2, lo16(.CPI_X_1)(r2) fmadd f0, f1, f0, f2 lis r2, ha16(.CPI_X_2) lfd f1, lo16(.CPI_X_2)(r2) lis r2, ha16(.CPI_X_3) lfd f2, lo16(.CPI_X_3)(r2) fmadd f1, f0, f1, f2 blr It would be better to materialize .CPI_X into a register, then use immediates off of the register to avoid the lis's. This is even more important in PIC mode. Note that this (and the static variable version) is discussed here for GCC: http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html ===-------------------------------------------------------------------------=== PIC Code Gen IPO optimization: Squish small scalar globals together into a single global struct, allowing the address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size of the GOT on targets with one). Note that this is discussed here for GCC: http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html ===-------------------------------------------------------------------------=== Implement Newton-Rhapson method for improving estimate instructions to the correct accuracy, and implementing divide as multiply by reciprocal when it has more than one use. Itanium will want this too. ===-------------------------------------------------------------------------=== #define ARRAY_LENGTH 16 union bitfield { struct { #ifndef __ppc__ unsigned int field0 : 6; unsigned int field1 : 6; unsigned int field2 : 6; unsigned int field3 : 6; unsigned int field4 : 3; unsigned int field5 : 4; unsigned int field6 : 1; #else unsigned int field6 : 1; unsigned int field5 : 4; unsigned int field4 : 3; unsigned int field3 : 6; unsigned int field2 : 6; unsigned int field1 : 6; unsigned int field0 : 6; #endif } bitfields, bits; unsigned int u32All; signed int i32All; float f32All; }; typedef struct program_t { union bitfield array[ARRAY_LENGTH]; int size; int loaded; } program; void AdjustBitfields(program* prog, unsigned int fmt1) { prog->array[0].bitfields.field0 = fmt1; prog->array[0].bitfields.field1 = fmt1 + 1; } We currently generate: _AdjustBitfields: lwz r2, 0(r3) addi r5, r4, 1 rlwinm r2, r2, 0, 0, 19 rlwinm r5, r5, 6, 20, 25 rlwimi r2, r4, 0, 26, 31 or r2, r2, r5 stw r2, 0(r3) blr We should teach someone that or (rlwimi, rlwinm) with disjoint masks can be turned into rlwimi (rlwimi) The better codegen would be: _AdjustBitfields: lwz r0,0(r3) rlwinm r4,r4,0,0xff rlwimi r0,r4,0,26,31 addi r4,r4,1 rlwimi r0,r4,6,20,25 stw r0,0(r3) blr ===-------------------------------------------------------------------------=== Compile this: int %f1(int %a, int %b) { %tmp.1 = and int %a, 15 ; <int> [#uses=1] %tmp.3 = and int %b, 240 ; <int> [#uses=1] %tmp.4 = or int %tmp.3, %tmp.1 ; <int> [#uses=1] ret int %tmp.4 } without a copy. We make this currently: _f1: rlwinm r2, r4, 0, 24, 27 rlwimi r2, r3, 0, 28, 31 or r3, r2, r2 blr The two-addr pass or RA needs to learn when it is profitable to commute an instruction to avoid a copy AFTER the 2-addr instruction. The 2-addr pass currently only commutes to avoid inserting a copy BEFORE the two addr instr. ===-------------------------------------------------------------------------=== Compile offsets from allocas: int *%test() { %X = alloca { int, int } %Y = getelementptr {int,int}* %X, int 0, uint 1 ret int* %Y } into a single add, not two: _test: addi r2, r1, -8 addi r3, r2, 4 blr --> important for C++. ===-------------------------------------------------------------------------=== int test3(int a, int b) { return (a < 0) ? a : 0; } should be branch free code. LLVM is turning it into < 1 because of the RHS. ===-------------------------------------------------------------------------=== No loads or stores of the constants should be needed: struct foo { double X, Y; }; void xxx(struct foo F); void bar() { struct foo R = { 1.0, 2.0 }; xxx(R); } ===-------------------------------------------------------------------------=== Darwin Stub LICM optimization: Loops like this: for (...) bar(); Have to go through an indirect stub if bar is external or linkonce. It would be better to compile it as: fp = &bar; for (...) fp(); which only computes the address of bar once (instead of each time through the stub). This is Darwin specific and would have to be done in the code generator. Probably not a win on x86. ===-------------------------------------------------------------------------=== PowerPC i1/setcc stuff (depends on subreg stuff): Check out the PPC code we get for 'compare' in this testcase: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19672 oof. on top of not doing the logical crnand instead of (mfcr, mfcr, invert, invert, or), we then have to compare it against zero instead of using the value already in a CR! that should be something like cmpw cr7, r8, r5 cmpw cr0, r7, r3 crnand cr0, cr0, cr7 bne cr0, LBB_compare_4 instead of cmpw cr7, r8, r5 cmpw cr0, r7, r3 mfcr r7, 1 mcrf cr7, cr0 mfcr r8, 1 rlwinm r7, r7, 30, 31, 31 rlwinm r8, r8, 30, 31, 31 xori r7, r7, 1 xori r8, r8, 1 addi r2, r2, 1 or r7, r8, r7 cmpwi cr0, r7, 0 bne cr0, LBB_compare_4 ; loopexit FreeBench/mason has a basic block that looks like this: %tmp.130 = seteq int %p.0__, 5 ; <bool> [#uses=1] %tmp.134 = seteq int %p.1__, 6 ; <bool> [#uses=1] %tmp.139 = seteq int %p.2__, 12 ; <bool> [#uses=1] %tmp.144 = seteq int %p.3__, 13 ; <bool> [#uses=1] %tmp.149 = seteq int %p.4__, 14 ; <bool> [#uses=1] %tmp.154 = seteq int %p.5__, 15 ; <bool> [#uses=1] %bothcond = and bool %tmp.134, %tmp.130 ; <bool> [#uses=1] %bothcond123 = and bool %bothcond, %tmp.139 ; <bool> %bothcond124 = and bool %bothcond123, %tmp.144 ; <bool> %bothcond125 = and bool %bothcond124, %tmp.149 ; <bool> %bothcond126 = and bool %bothcond125, %tmp.154 ; <bool> br bool %bothcond126, label %shortcirc_next.5, label %else.0 This is a particularly important case where handling CRs better will help. ===-------------------------------------------------------------------------=== Simple IPO for argument passing, change: void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y) the Darwin ABI specifies that any integer arguments in the first 32 bytes worth of arguments get assigned to r3 through r10. That is, if you have a function foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the argument bytes for r4 and r5. The trick then would be to shuffle the argument order for functions we can internalize so that the maximum number of integers/pointers get passed in regs before you see any of the fp arguments. Instead of implementing this, it would actually probably be easier to just implement a PPC fastcc, where we could do whatever we wanted to the CC, including having this work sanely. ===-------------------------------------------------------------------------=== Fix Darwin FP-In-Integer Registers ABI Darwin passes doubles in structures in integer registers, which is very very bad. Add something like a BIT_CONVERT to LLVM, then do an i-p transformation that percolates these things out of functions. Check out how horrible this is: http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html This is an extension of "interprocedural CC unmunging" that can't be done with just fastcc. ===-------------------------------------------------------------------------=== Generate lwbrx and other byteswapping load/store instructions when reasonable. ===-------------------------------------------------------------------------=== Compile this: int foo(int a) { int b = (a < 8); if (b) { return b * 3; // ignore the fact that this is always 3. } else { return 2; } } into something not this: _foo: 1) cmpwi cr7, r3, 8 mfcr r2, 1 rlwinm r2, r2, 29, 31, 31 1) cmpwi cr0, r3, 7 bgt cr0, LBB1_2 ; UnifiedReturnBlock LBB1_1: ; then rlwinm r2, r2, 0, 31, 31 mulli r3, r2, 3 blr LBB1_2: ; UnifiedReturnBlock li r3, 2 blr In particular, the two compares (marked 1) could be shared by reversing one. This could be done in the dag combiner, by swapping a BR_CC when a SETCC of the same operands (but backwards) exists. In this case, this wouldn't save us anything though, because the compares still wouldn't be shared. ===-------------------------------------------------------------------------=== The legalizer should lower this: bool %test(ulong %x) { %tmp = setlt ulong %x, 4294967296 ret bool %tmp } into "if x.high == 0", not: _test: addi r2, r3, -1 cntlzw r2, r2 cntlzw r3, r3 srwi r2, r2, 5 srwi r4, r3, 5 li r3, 0 cmpwi cr0, r2, 0 bne cr0, LBB1_2 ; LBB1_1: or r3, r4, r4 LBB1_2: blr noticed in 2005-05-11-Popcount-ffs-fls.c. ===-------------------------------------------------------------------------=== We should custom expand setcc instead of pretending that we have it. That would allow us to expose the access of the crbit after the mfcr, allowing that access to be trivially folded into other ops. A simple example: int foo(int a, int b) { return (a < b) << 4; } compiles into: _foo: cmpw cr7, r3, r4 mfcr r2, 1 rlwinm r2, r2, 29, 31, 31 slwi r3, r2, 4 blr ===-------------------------------------------------------------------------=== Fold add and sub with constant into non-extern, non-weak addresses so this: static int a; void bar(int b) { a = b; } void foo(unsigned char *c) { *c = a; } So that _foo: lis r2, ha16(_a) la r2, lo16(_a)(r2) lbz r2, 3(r2) stb r2, 0(r3) blr Becomes _foo: lis r2, ha16(_a+3) lbz r2, lo16(_a+3)(r2) stb r2, 0(r3) blr ===-------------------------------------------------------------------------=== We generate really bad code for this: int f(signed char *a, _Bool b, _Bool c) { signed char t = 0; if (b) t = *a; if (c) *a = t; } ===-------------------------------------------------------------------------=== This: int test(unsigned *P) { return *P >> 24; } Should compile to: _test: lbz r3,0(r3) blr not: _test: lwz r2, 0(r3) srwi r3, r2, 24 blr ===-------------------------------------------------------------------------=== On the G5, logical CR operations are more expensive in their three address form: ops that read/write the same register are half as expensive as those that read from two registers that are different from their destination. We should model this with two separate instructions. The isel should generate the "two address" form of the instructions. When the register allocator detects that it needs to insert a copy due to the two-addresness of the CR logical op, it will invoke PPCInstrInfo::convertToThreeAddress. At this point we can convert to the "three address" instruction, to save code space. This only matters when we start generating cr logical ops. ===-------------------------------------------------------------------------=== We should compile these two functions to the same thing: #include <stdlib.h> void f(int a, int b, int *P) { *P = (a-b)>=0?(a-b):(b-a); } void g(int a, int b, int *P) { *P = abs(a-b); } Further, they should compile to something better than: _g: subf r2, r4, r3 subfic r3, r2, 0 cmpwi cr0, r2, -1 bgt cr0, LBB2_2 ; entry LBB2_1: ; entry mr r2, r3 LBB2_2: ; entry stw r2, 0(r5) blr GCC produces: _g: subf r4,r4,r3 srawi r2,r4,31 xor r0,r2,r4 subf r0,r2,r0 stw r0,0(r5) blr ... which is much nicer. This theoretically may help improve twolf slightly (used in dimbox.c:142?). ===-------------------------------------------------------------------------=== int foo(int N, int ***W, int **TK, int X) { int t, i; for (t = 0; t < N; ++t) for (i = 0; i < 4; ++i) W[t / X][i][t % X] = TK[i][t]; return 5; } We generate relatively atrocious code for this loop compared to gcc. We could also strength reduce the rem and the div: http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf ===-------------------------------------------------------------------------=== float foo(float X) { return (int)(X); } Currently produces: _foo: fctiwz f0, f1 stfd f0, -8(r1) lwz r2, -4(r1) extsw r2, r2 std r2, -16(r1) lfd f0, -16(r1) fcfid f0, f0 frsp f1, f0 blr We could use a target dag combine to turn the lwz/extsw into an lwa when the lwz has a single use. Since LWA is cracked anyway, this would be a codesize win only. ===-------------------------------------------------------------------------=== We generate ugly code for this: void func(unsigned int *ret, float dx, float dy, float dz, float dw) { unsigned code = 0; if(dx < -dw) code |= 1; if(dx > dw) code |= 2; if(dy < -dw) code |= 4; if(dy > dw) code |= 8; if(dz < -dw) code |= 16; if(dz > dw) code |= 32; *ret = code; } ===-------------------------------------------------------------------------=== extract_vector_elt of an arbitrary constant vector can be done with the following instructions: vTemp = vec_splat(v0,2); // 2 is the element the src is in. vec_ste(&destloc,0,vTemp); We can do an arbitrary non-constant value by using lvsr/perm/ste. ===-------------------------------------------------------------------------===