llvm-6502/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
Evan Cheng 3a21425dbe Fix Thumb2 load / store addressing mode matching code. Do not use so_reg form to
match base only address, i.e. [r] since Thumb2 requires a offset register field.
For those, use [r + imm12] where the immediate is zero.
Note the generated assembly code does not look any different after the patch.
But the bug would have broken the JIT (if there is Thumb2 support) and it can
break later passes which expect the address mode to be well-formed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78658 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-11 08:52:18 +00:00

1377 lines
46 KiB
C++

//===-- ARMAsmPrinter.cpp - ARM LLVM assembly writer ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMTargetMachine.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/FormattedStream.h"
#include <cctype>
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
class VISIBILITY_HIDDEN ARMAsmPrinter : public AsmPrinter {
DwarfWriter *DW;
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction.
ARMFunctionInfo *AFI;
/// MCP - Keep a pointer to constantpool entries of the current
/// MachineFunction.
const MachineConstantPool *MCP;
/// We name each basic block in a Function with a unique number, so
/// that we can consistently refer to them later. This is cleared
/// at the beginning of each call to runOnMachineFunction().
///
typedef std::map<const Value *, unsigned> ValueMapTy;
ValueMapTy NumberForBB;
/// GVNonLazyPtrs - Keeps the set of GlobalValues that require
/// non-lazy-pointers for indirect access.
StringMap<std::string> GVNonLazyPtrs;
/// HiddenGVNonLazyPtrs - Keeps the set of GlobalValues with hidden
/// visibility that require non-lazy-pointers for indirect access.
StringMap<std::string> HiddenGVNonLazyPtrs;
struct FnStubInfo {
std::string Stub, LazyPtr, SLP, SCV;
FnStubInfo() {}
void Init(const GlobalValue *GV, Mangler *Mang) {
// Already initialized.
if (!Stub.empty()) return;
Stub = Mang->getMangledName(GV, "$stub", true);
LazyPtr = Mang->getMangledName(GV, "$lazy_ptr", true);
SLP = Mang->getMangledName(GV, "$slp", true);
SCV = Mang->getMangledName(GV, "$scv", true);
}
void Init(const std::string &GV, Mangler *Mang) {
// Already initialized.
if (!Stub.empty()) return;
Stub = Mang->makeNameProper(GV + "$stub", Mangler::Private);
LazyPtr = Mang->makeNameProper(GV + "$lazy_ptr", Mangler::Private);
SLP = Mang->makeNameProper(GV + "$slp", Mangler::Private);
SCV = Mang->makeNameProper(GV + "$scv", Mangler::Private);
}
};
/// FnStubs - Keeps the set of external function GlobalAddresses that the
/// asm printer should generate stubs for.
StringMap<FnStubInfo> FnStubs;
/// True if asm printer is printing a series of CONSTPOOL_ENTRY.
bool InCPMode;
public:
explicit ARMAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
const TargetAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V), DW(0), AFI(NULL), MCP(NULL),
InCPMode(false) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void printOperand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printSOImmOperand(const MachineInstr *MI, int OpNum);
void printSOImm2PartOperand(const MachineInstr *MI, int OpNum);
void printSORegOperand(const MachineInstr *MI, int OpNum);
void printAddrMode2Operand(const MachineInstr *MI, int OpNum);
void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum);
void printAddrMode3Operand(const MachineInstr *MI, int OpNum);
void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum);
void printAddrMode4Operand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printAddrMode5Operand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printAddrMode6Operand(const MachineInstr *MI, int OpNum);
void printAddrModePCOperand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printBitfieldInvMaskImmOperand (const MachineInstr *MI, int OpNum);
void printThumbITMask(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum,
unsigned Scale);
void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum);
void printT2SOOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
void printPredicateOperand(const MachineInstr *MI, int OpNum);
void printSBitModifierOperand(const MachineInstr *MI, int OpNum);
void printPCLabel(const MachineInstr *MI, int OpNum);
void printRegisterList(const MachineInstr *MI, int OpNum);
void printCPInstOperand(const MachineInstr *MI, int OpNum,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int OpNum);
void printJT2BlockOperand(const MachineInstr *MI, int OpNum);
void printTBAddrMode(const MachineInstr *MI, int OpNum);
void printLaneOperand(const MachineInstr *MI, int OpNum);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode);
virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode);
void PrintGlobalVariable(const GlobalVariable* GVar);
void printInstruction(const MachineInstr *MI); // autogenerated.
void printMachineInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
printDataDirective(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
GlobalValue *GV = ACPV->getGV();
std::string Name;
if (ACPV->isNonLazyPointer()) {
std::string SymName = Mang->getMangledName(GV);
Name = Mang->getMangledName(GV, "$non_lazy_ptr", true);
if (GV->hasHiddenVisibility())
HiddenGVNonLazyPtrs[SymName] = Name;
else
GVNonLazyPtrs[SymName] = Name;
} else if (ACPV->isStub()) {
if (GV) {
FnStubInfo &FnInfo = FnStubs[Mang->getMangledName(GV)];
FnInfo.Init(GV, Mang);
Name = FnInfo.Stub;
} else {
FnStubInfo &FnInfo = FnStubs[Mang->makeNameProper(ACPV->getSymbol())];
FnInfo.Init(ACPV->getSymbol(), Mang);
Name = FnInfo.Stub;
}
} else {
if (GV)
Name = Mang->getMangledName(GV);
else if (!strncmp(ACPV->getSymbol(), "L_lsda_", 7))
Name = ACPV->getSymbol();
else
Name = Mang->makeNameProper(ACPV->getSymbol());
}
O << Name;
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << TAI->getPrivateGlobalPrefix() << "PC"
<< ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ")";
}
O << "\n";
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AsmPrinter::getAnalysisUsage(AU);
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
AU.addRequired<DwarfWriter>();
}
};
} // end of anonymous namespace
#include "ARMGenAsmWriter.inc"
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
SetupMachineFunction(MF);
O << "\n";
// NOTE: we don't print out constant pools here, they are handled as
// instructions.
O << '\n';
// Print out labels for the function.
const Function *F = MF.getFunction();
SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::LinkerPrivateLinkage:
case Function::InternalLinkage:
break;
case Function::ExternalLinkage:
O << "\t.globl\t" << CurrentFnName << "\n";
break;
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
} else {
O << TAI->getWeakRefDirective() << CurrentFnName << "\n";
}
break;
}
printVisibility(CurrentFnName, F->getVisibility());
if (AFI->isThumbFunction()) {
EmitAlignment(MF.getAlignment(), F, AFI->getAlign());
O << "\t.code\t16\n";
O << "\t.thumb_func";
if (Subtarget->isTargetDarwin())
O << "\t" << CurrentFnName;
O << "\n";
InCPMode = false;
} else {
EmitAlignment(MF.getAlignment(), F);
}
O << CurrentFnName << ":\n";
// Emit pre-function debug information.
DW->BeginFunction(&MF);
if (Subtarget->isTargetDarwin()) {
// If the function is empty, then we need to emit *something*. Otherwise,
// the function's label might be associated with something that it wasn't
// meant to be associated with. We emit a noop in this situation.
MachineFunction::iterator I = MF.begin();
if (++I == MF.end() && MF.front().empty())
O << "\tnop\n";
}
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
printBasicBlockLabel(I, true, true, VerboseAsm);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
// Emit post-function debug information.
DW->EndFunction(&MF);
return false;
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (Modifier && strcmp(Modifier, "dregpair") == 0) {
unsigned DRegLo = TRI->getSubReg(Reg, 5); // arm_dsubreg_0
unsigned DRegHi = TRI->getSubReg(Reg, 6); // arm_dsubreg_1
O << '{'
<< TRI->getAsmName(DRegLo) << ',' << TRI->getAsmName(DRegHi)
<< '}';
} else if (Modifier && strcmp(Modifier, "lane") == 0) {
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg);
unsigned DReg = TRI->getMatchingSuperReg(Reg, RegNum & 1 ? 0 : 1,
&ARM::DPRRegClass);
O << TRI->getAsmName(DReg) << '[' << (RegNum & 1) << ']';
} else {
O << TRI->getAsmName(Reg);
}
} else
llvm_unreachable("not implemented");
break;
}
case MachineOperand::MO_Immediate: {
O << '#' << MO.getImm();
break;
}
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
GlobalValue *GV = MO.getGlobal();
std::string Name;
bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
if (isExt && isCallOp && Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static) {
FnStubInfo &FnInfo = FnStubs[Mang->getMangledName(GV)];
FnInfo.Init(GV, Mang);
Name = FnInfo.Stub;
} else {
Name = Mang->getMangledName(GV);
}
O << Name;
printOffset(MO.getOffset());
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
std::string Name;
if (isCallOp && Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static) {
FnStubInfo &FnInfo = FnStubs[Mang->makeNameProper(MO.getSymbolName())];
FnInfo.Init(MO.getSymbolName(), Mang);
Name = FnInfo.Stub;
} else
Name = Mang->makeNameProper(MO.getSymbolName());
O << Name;
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
case MachineOperand::MO_JumpTableIndex:
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
}
static void printSOImm(formatted_raw_ostream &O, int64_t V, bool VerboseAsm,
const TargetAsmInfo *TAI) {
// Break it up into two parts that make up a shifter immediate.
V = ARM_AM::getSOImmVal(V);
assert(V != -1 && "Not a valid so_imm value!");
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
// Print low-level immediate formation info, per
// A5.1.3: "Data-processing operands - Immediate".
if (Rot) {
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
if (VerboseAsm)
O << ' ' << TAI->getCommentString()
<< ' ' << (int)ARM_AM::rotr32(Imm, Rot);
} else {
O << "#" << Imm;
}
}
/// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit
/// immediate in bits 0-7.
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
printSOImm(O, MO.getImm(), VerboseAsm, TAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov'
/// followed by an 'orr' to materialize.
void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm());
printSOImm(O, V1, VerboseAsm, TAI);
O << "\n\torr";
printPredicateOperand(MI, 2);
O << " ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 0);
O << ", ";
printSOImm(O, V2, VerboseAsm, TAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << TRI->getAsmName(MO1.getReg());
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()))
<< " ";
if (MO2.getReg()) {
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
O << TRI->getAsmName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << TRI->getAsmName(MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< TRI->getAsmName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm()))
<< " #" << ShImm;
O << "]";
}
void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM2Op(MO2.getImm())
<< ImmOffs;
return;
}
O << (char)ARM_AM::getAM2Op(MO2.getImm())
<< TRI->getAsmName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm()))
<< " #" << ShImm;
}
void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << TRI->getAsmName(MO1.getReg());
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< TRI->getAsmName(MO2.getReg())
<< "]";
return;
}
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< ImmOffs;
O << "]";
}
void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
<< TRI->getAsmName(MO1.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM3Op(MO2.getImm())
<< ImmOffs;
}
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
if (MO1.getReg() == ARM::SP) {
// FIXME
bool isLDM = (MI->getOpcode() == ARM::LDM ||
MI->getOpcode() == ARM::LDM_RET ||
MI->getOpcode() == ARM::t2LDM ||
MI->getOpcode() == ARM::t2LDM_RET);
O << ARM_AM::getAMSubModeAltStr(Mode, isLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
} else if (Modifier && strcmp(Modifier, "wide") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Mode == ARM_AM::ia)
O << ".w";
} else {
printOperand(MI, Op);
if (ARM_AM::getAM4WBFlag(MO2.getImm()))
O << "!";
}
}
void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
if (Modifier && strcmp(Modifier, "submode") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MO2.getImm());
if (MO1.getReg() == ARM::SP) {
bool isFLDM = (MI->getOpcode() == ARM::FLDMD ||
MI->getOpcode() == ARM::FLDMS);
O << ARM_AM::getAMSubModeAltStr(Mode, isFLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
return;
} else if (Modifier && strcmp(Modifier, "base") == 0) {
// Used for FSTM{D|S} and LSTM{D|S} operations.
O << TRI->getAsmName(MO1.getReg());
if (ARM_AM::getAM5WBFlag(MO2.getImm()))
O << "!";
return;
}
O << "[" << TRI->getAsmName(MO1.getReg());
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< (char)ARM_AM::getAM5Op(MO2.getImm())
<< ImmOffs*4;
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
// FIXME: No support yet for specifying alignment.
O << "[" << TRI->getAsmName(MO1.getReg()) << "]";
if (ARM_AM::getAM6WBFlag(MO3.getImm())) {
if (MO2.getReg() == 0)
O << "!";
else
O << ", " << TRI->getAsmName(MO2.getReg());
}
}
void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const char *Modifier) {
if (Modifier && strcmp(Modifier, "label") == 0) {
printPCLabel(MI, Op+1);
return;
}
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[pc, +" << TRI->getAsmName(MO1.getReg()) << "]";
}
void
ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO = MI->getOperand(Op);
uint32_t v = ~MO.getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
O << "#" << lsb << ", #" << width;
}
//===--------------------------------------------------------------------===//
void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = (Mask & (1 << Pos)) != 0;
if (T)
O << 't';
else
O << 'e';
}
}
void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << TRI->getAsmName(MO1.getReg());
O << ", " << TRI->getAsmName(MO2.getReg()) << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
unsigned Scale) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << TRI->getAsmName(MO1.getReg());
if (MO3.getReg())
O << ", " << TRI->getAsmName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm()) {
O << ", #" << ImmOffs;
if (Scale > 1)
O << " * " << Scale;
}
O << "]";
}
void
ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 1);
}
void
ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 2);
}
void
ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 4);
}
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << TRI->getAsmName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs << " * 4";
O << "]";
}
//===--------------------------------------------------------------------===//
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
unsigned Reg = MO1.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
O << TRI->getAsmName(Reg);
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
<< " ";
assert(MO2.isImm() && "Not a valid t2_so_reg value!");
O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
}
void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << TRI->getAsmName(MO1.getReg());
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
O << ", #+" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << TRI->getAsmName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
O << ", #+" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << TRI->getAsmName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm() / 4;
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm << " * 4";
else if (OffImm > 0)
O << ", #+" << OffImm << " * 4";
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
// Don't print +0.
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
O << "#+" << OffImm;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
const MachineOperand &MO3 = MI->getOperand(OpNum+2);
O << "[" << TRI->getAsmName(MO1.getReg());
assert(MO2.getReg() && "Invalid so_reg load / store address!");
O << ", +" << TRI->getAsmName(MO2.getReg());
unsigned ShAmt = MO3.getImm();
if (ShAmt) {
assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
O << ", lsl #" << ShAmt;
}
O << "]";
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum){
unsigned Reg = MI->getOperand(OpNum).getReg();
if (Reg) {
assert(Reg == ARM::CPSR && "Expect ARM CPSR register!");
O << 's';
}
}
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum) {
int Id = (int)MI->getOperand(OpNum).getImm();
O << TAI->getPrivateGlobalPrefix() << "PC" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum) {
O << "{";
for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
printOperand(MI, i);
if (i != e-1) O << ", ";
}
O << "}";
}
void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
const char *Modifier) {
assert(Modifier && "This operand only works with a modifier!");
// There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNum).getImm();
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << ID << ":\n";
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNum).getIndex();
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
if (MCPE.isMachineConstantPoolEntry()) {
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
} else {
EmitGlobalConstant(MCPE.Val.ConstVal);
}
}
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum) {
assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!");
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ":\n";
const char *JTEntryDirective = TAI->getJumpTableDirective();
if (!JTEntryDirective)
JTEntryDirective = TAI->getData32bitsDirective();
const MachineFunction *MF = MI->getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool UseSet= TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
SmallPtrSet<MachineBasicBlock*, 8> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
bool isNew = JTSets.insert(MBB);
if (UseSet && isNew)
printPICJumpTableSetLabel(JTI, MO2.getImm(), MBB);
O << JTEntryDirective << ' ';
if (UseSet)
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm()
<< "_set_" << MBB->getNumber();
else if (TM.getRelocationModel() == Reloc::PIC_) {
printBasicBlockLabel(MBB, false, false, false);
// If the arch uses custom Jump Table directives, don't calc relative to JT
if (!TAI->getJumpTableDirective())
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << JTI << '_' << MO2.getImm();
} else {
printBasicBlockLabel(MBB, false, false, false);
}
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ":\n";
const MachineFunction *MF = MI->getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool ByteOffset = false, HalfWordOffset = false;
if (MI->getOpcode() == ARM::t2TBB)
ByteOffset = true;
else if (MI->getOpcode() == ARM::t2TBH)
HalfWordOffset = true;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
if (ByteOffset)
O << TAI->getData8bitsDirective();
else if (HalfWordOffset)
O << TAI->getData16bitsDirective();
if (ByteOffset || HalfWordOffset) {
O << '(';
printBasicBlockLabel(MBB, false, false, false);
O << "-" << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ")/2";
} else {
O << "\tb.w ";
printBasicBlockLabel(MBB, false, false, false);
}
if (i != e-1)
O << '\n';
}
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (ByteOffset && (JTBBs.size() & 1)) {
O << '\n';
EmitAlignment(1);
}
}
void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum) {
O << "[pc, " << TRI->getAsmName(MI->getOperand(OpNum).getReg());
if (MI->getOpcode() == ARM::t2TBH)
O << ", lsl #1";
O << ']';
}
void ARMAsmPrinter::printLaneOperand(const MachineInstr *MI, int OpNum) {
O << MI->getOperand(OpNum).getImm();
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode){
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "[" << TRI->getAsmName(MI->getOperand(OpNum).getReg()) << "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
printLaneOperand(MI, OpNum);
return false;
case 'P': // Print a VFP double precision register.
printOperand(MI, OpNum);
return false;
case 'Q':
if (TM.getTargetData()->isLittleEndian())
break;
// Fallthrough
case 'R':
if (TM.getTargetData()->isBigEndian())
break;
// Fallthrough
case 'H': // Write second word of DI / DF reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNum).isReg() ||
OpNum+1 == MI->getNumOperands() ||
!MI->getOperand(OpNum+1).isReg())
return true;
++OpNum; // Return the high-part.
}
}
printOperand(MI, OpNum);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printAddrMode2Operand(MI, OpNum);
return false;
}
void ARMAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
int Opc = MI->getOpcode();
switch (Opc) {
case ARM::CONSTPOOL_ENTRY:
if (!InCPMode && AFI->isThumbFunction()) {
EmitAlignment(2);
InCPMode = true;
}
break;
default: {
if (InCPMode && AFI->isThumbFunction())
InCPMode = false;
}}
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
bool ARMAsmPrinter::doInitialization(Module &M) {
bool Result = AsmPrinter::doInitialization(M);
DW = getAnalysisIfAvailable<DwarfWriter>();
// Use unified assembler syntax mode for Thumb.
if (Subtarget->isThumb())
O << "\t.syntax unified\n";
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
// CPU Type
std::string CPUString = Subtarget->getCPUString();
if (CPUString != "generic")
O << "\t.cpu " << CPUString << '\n';
// FIXME: Emit FPU type
if (Subtarget->hasVFP2())
O << "\t.eabi_attribute " << ARMBuildAttrs::VFP_arch << ", 2\n";
// Signal various FP modes.
if (!UnsafeFPMath)
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_denormal << ", 1\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_exceptions << ", 1\n";
if (FiniteOnlyFPMath())
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 1\n";
else
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 3\n";
// 8-bytes alignment stuff.
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_needed << ", 1\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_preserved << ", 1\n";
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard)
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_HardFP_use << ", 3\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_VFP_args << ", 1\n";
// FIXME: Should we signal R9 usage?
}
return Result;
}
/// PrintUnmangledNameSafely - Print out the printable characters in the name.
/// Don't print things like \\n or \\0.
static void PrintUnmangledNameSafely(const Value *V,
formatted_raw_ostream &OS) {
for (StringRef::iterator it = V->getName().begin(),
ie = V->getName().end(); it != ie; ++it)
if (isprint(*it))
OS << *it;
}
void ARMAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer()) // External global require no code
return;
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
bool isDarwin = Subtarget->isTargetDarwin();
printVisibility(name, GVar->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type " << name << ",%object\n";
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GVar, Mang, TM);
SwitchToSection(TheSection);
// FIXME: get this stuff from section kind flags.
if (C->isNullValue() && !GVar->hasSection() && !GVar->isThreadLocal() &&
// Don't put things that should go in the cstring section into "comm".
!TheSection->getKind().isMergeableCString()) {
if (GVar->hasExternalLinkage()) {
if (const char *Directive = TAI->getZeroFillDirective()) {
O << "\t.globl\t" << name << "\n";
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << "\n";
return;
}
}
if (GVar->hasLocalLinkage() || GVar->isWeakForLinker()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (isDarwin) {
if (GVar->hasLocalLinkage()) {
O << TAI->getLCOMMDirective() << name << "," << Size
<< ',' << Align;
} else if (GVar->hasCommonLinkage()) {
O << TAI->getCOMMDirective() << name << "," << Size
<< ',' << Align;
} else {
SwitchToSection(getObjFileLowering().SectionForGlobal(GVar, Mang,TM));
O << "\t.globl " << name << '\n'
<< TAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
}
O << '\n';
EmitGlobalConstant(C);
return;
}
} else if (TAI->getLCOMMDirective() != NULL) {
if (GVar->hasLocalLinkage()) {
O << TAI->getLCOMMDirective() << name << "," << Size;
} else {
O << TAI->getCOMMDirective() << name << "," << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
} else {
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << "\n";
O << TAI->getCOMMDirective() << name << "," << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
if (VerboseAsm) {
O << "\t\t" << TAI->getCommentString() << " ";
PrintUnmangledNameSafely(GVar, O);
}
O << "\n";
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (isDarwin) {
O << "\t.globl " << name << "\n"
<< "\t.weak_definition " << name << "\n";
} else {
O << "\t.weak " << name << "\n";
}
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
O << "\t.globl " << name << "\n";
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::InternalLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << TAI->getCommentString() << " ";
PrintUnmangledNameSafely(GVar, O);
}
O << "\n";
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size " << name << ", " << Size << "\n";
EmitGlobalConstant(C);
O << '\n';
}
bool ARMAsmPrinter::doFinalization(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
O << '\n';
if (!FnStubs.empty()) {
unsigned StubSize = 12;
const char *StubSectionName = "__symbol_stub4";
if (TM.getRelocationModel() == Reloc::PIC_) {
StubSize = 16;
StubSectionName = "__picsymbolstub4";
}
const MCSection *StubSection
= TLOFMacho.getMachOSection("__TEXT", StubSectionName,
MCSectionMachO::S_SYMBOL_STUBS,
StubSize, SectionKind::getText());
const MCSection *LazySymbolPointerSection
= TLOFMacho.getLazySymbolPointerSection();
// Output stubs for dynamically-linked functions
for (StringMap<FnStubInfo>::iterator I = FnStubs.begin(),
E = FnStubs.end(); I != E; ++I) {
const FnStubInfo &Info = I->second;
SwitchToSection(StubSection);
EmitAlignment(2);
O << "\t.code\t32\n";
O << Info.Stub << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << '\n';
O << "\tldr ip, " << Info.SLP << '\n';
if (TM.getRelocationModel() == Reloc::PIC_) {
O << Info.SCV << ":\n";
O << "\tadd ip, pc, ip\n";
}
O << "\tldr pc, [ip, #0]\n";
O << Info.SLP << ":\n";
O << "\t.long\t" << Info.LazyPtr;
if (TM.getRelocationModel() == Reloc::PIC_)
O << "-(" << Info.SCV << "+8)";
O << '\n';
SwitchToSection(LazySymbolPointerSection);
O << Info.LazyPtr << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << "\n";
O << "\t.long\tdyld_stub_binding_helper\n";
}
O << '\n';
}
// Output non-lazy-pointers for external and common global variables.
if (!GVNonLazyPtrs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
SwitchToSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (StringMap<std::string>::iterator I = GVNonLazyPtrs.begin(),
E = GVNonLazyPtrs.end(); I != E; ++I) {
O << I->second << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << "\n";
O << "\t.long\t0\n";
}
}
if (!HiddenGVNonLazyPtrs.empty()) {
SwitchToSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (StringMap<std::string>::iterator I = HiddenGVNonLazyPtrs.begin(),
E = HiddenGVNonLazyPtrs.end(); I != E; ++I) {
O << I->second << ":\n";
O << "\t.long " << I->getKeyData() << "\n";
}
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
}
return AsmPrinter::doFinalization(M);
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
}