llvm-6502/lib/Target/AArch64/AArch64BranchFixupPass.cpp
Chandler Carruth 974a445bd9 Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-07 11:48:04 +00:00

601 lines
21 KiB
C++

//===-- AArch64BranchFixupPass.cpp - AArch64 branch fixup -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that fixes AArch64 branches which have ended up out
// of range for their immediate operands.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "aarch64-branch-fixup"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumSplit, "Number of uncond branches inserted");
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
/// Return the worst case padding that could result from unknown offset bits.
/// This does not include alignment padding caused by known offset bits.
///
/// @param LogAlign log2(alignment)
/// @param KnownBits Number of known low offset bits.
static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
if (KnownBits < LogAlign)
return (1u << LogAlign) - (1u << KnownBits);
return 0;
}
namespace {
/// Due to limited PC-relative displacements, conditional branches to distant
/// blocks may need converting into an unconditional equivalent. For example:
/// tbz w1, #0, far_away
/// becomes
/// tbnz w1, #0, skip
/// b far_away
/// skip:
class AArch64BranchFixup : public MachineFunctionPass {
/// Information about the offset and size of a single basic block.
struct BasicBlockInfo {
/// Distance from the beginning of the function to the beginning of this
/// basic block.
///
/// Offsets are computed assuming worst case padding before an aligned
/// block. This means that subtracting basic block offsets always gives a
/// conservative estimate of the real distance which may be smaller.
///
/// Because worst case padding is used, the computed offset of an aligned
/// block may not actually be aligned.
unsigned Offset;
/// Size of the basic block in bytes. If the block contains inline
/// assembly, this is a worst case estimate.
///
/// The size does not include any alignment padding whether from the
/// beginning of the block, or from an aligned jump table at the end.
unsigned Size;
/// The number of low bits in Offset that are known to be exact. The
/// remaining bits of Offset are an upper bound.
uint8_t KnownBits;
/// When non-zero, the block contains instructions (inline asm) of unknown
/// size. The real size may be smaller than Size bytes by a multiple of 1
/// << Unalign.
uint8_t Unalign;
BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0) {}
/// Compute the number of known offset bits internally to this block.
/// This number should be used to predict worst case padding when
/// splitting the block.
unsigned internalKnownBits() const {
unsigned Bits = Unalign ? Unalign : KnownBits;
// If the block size isn't a multiple of the known bits, assume the
// worst case padding.
if (Size & ((1u << Bits) - 1))
Bits = countTrailingZeros(Size);
return Bits;
}
/// Compute the offset immediately following this block. If LogAlign is
/// specified, return the offset the successor block will get if it has
/// this alignment.
unsigned postOffset(unsigned LogAlign = 0) const {
unsigned PO = Offset + Size;
if (!LogAlign)
return PO;
// Add alignment padding from the terminator.
return PO + UnknownPadding(LogAlign, internalKnownBits());
}
/// Compute the number of known low bits of postOffset. If this block
/// contains inline asm, the number of known bits drops to the
/// instruction alignment. An aligned terminator may increase the number
/// of know bits.
/// If LogAlign is given, also consider the alignment of the next block.
unsigned postKnownBits(unsigned LogAlign = 0) const {
return std::max(LogAlign, internalKnownBits());
}
};
std::vector<BasicBlockInfo> BBInfo;
/// One per immediate branch, keeping the machine instruction pointer,
/// conditional or unconditional, the max displacement, and (if IsCond is
/// true) the corresponding inverted branch opcode.
struct ImmBranch {
MachineInstr *MI;
unsigned OffsetBits : 31;
bool IsCond : 1;
ImmBranch(MachineInstr *mi, unsigned offsetbits, bool cond)
: MI(mi), OffsetBits(offsetbits), IsCond(cond) {}
};
/// Keep track of all the immediate branch instructions.
///
std::vector<ImmBranch> ImmBranches;
MachineFunction *MF;
const AArch64InstrInfo *TII;
public:
static char ID;
AArch64BranchFixup() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "AArch64 branch fixup pass";
}
private:
void initializeFunctionInfo();
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
void adjustBBOffsetsAfter(MachineBasicBlock *BB);
bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB,
unsigned OffsetBits);
bool fixupImmediateBr(ImmBranch &Br);
bool fixupConditionalBr(ImmBranch &Br);
void computeBlockSize(MachineBasicBlock *MBB);
unsigned getOffsetOf(MachineInstr *MI) const;
void dumpBBs();
void verify();
};
char AArch64BranchFixup::ID = 0;
}
/// check BBOffsets
void AArch64BranchFixup::verify() {
#ifndef NDEBUG
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
unsigned MBBId = MBB->getNumber();
assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
}
#endif
}
/// print block size and offset information - debugging
void AArch64BranchFixup::dumpBBs() {
DEBUG({
for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
const BasicBlockInfo &BBI = BBInfo[J];
dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
<< " kb=" << unsigned(BBI.KnownBits)
<< " ua=" << unsigned(BBI.Unalign)
<< format(" size=%#x\n", BBInfo[J].Size);
}
});
}
/// Returns an instance of the branch fixup pass.
FunctionPass *llvm::createAArch64BranchFixupPass() {
return new AArch64BranchFixup();
}
bool AArch64BranchFixup::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
DEBUG(dbgs() << "***** AArch64BranchFixup ******");
TII = (const AArch64InstrInfo*)MF->getTarget().getInstrInfo();
// This pass invalidates liveness information when it splits basic blocks.
MF->getRegInfo().invalidateLiveness();
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
MF->RenumberBlocks();
// Do the initial scan of the function, building up information about the
// sizes of each block and location of each immediate branch.
initializeFunctionInfo();
// Iteratively fix up branches until there is no change.
unsigned NoBRIters = 0;
bool MadeChange = false;
while (true) {
DEBUG(dbgs() << "Beginning iteration #" << NoBRIters << '\n');
bool BRChange = false;
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
BRChange |= fixupImmediateBr(ImmBranches[i]);
if (BRChange && ++NoBRIters > 30)
report_fatal_error("Branch Fix Up pass failed to converge!");
DEBUG(dumpBBs());
if (!BRChange)
break;
MadeChange = true;
}
// After a while, this might be made debug-only, but it is not expensive.
verify();
DEBUG(dbgs() << '\n'; dumpBBs());
BBInfo.clear();
ImmBranches.clear();
return MadeChange;
}
/// Return true if the specified basic block can fallthrough into the block
/// immediately after it.
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
// Get the next machine basic block in the function.
MachineFunction::iterator MBBI = MBB;
// Can't fall off end of function.
if (llvm::next(MBBI) == MBB->getParent()->end())
return false;
MachineBasicBlock *NextBB = llvm::next(MBBI);
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I)
if (*I == NextBB)
return true;
return false;
}
/// Do the initial scan of the function, building up information about the sizes
/// of each block, and each immediate branch.
void AArch64BranchFixup::initializeFunctionInfo() {
BBInfo.clear();
BBInfo.resize(MF->getNumBlockIDs());
// First thing, compute the size of all basic blocks, and see if the function
// has any inline assembly in it. If so, we have to be conservative about
// alignment assumptions, as we don't know for sure the size of any
// instructions in the inline assembly.
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
computeBlockSize(I);
// The known bits of the entry block offset are determined by the function
// alignment.
BBInfo.front().KnownBits = MF->getAlignment();
// Compute block offsets and known bits.
adjustBBOffsetsAfter(MF->begin());
// Now go back through the instructions and build up our data structures.
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
if (I->isDebugValue())
continue;
int Opc = I->getOpcode();
if (I->isBranch()) {
bool IsCond = false;
// The offsets encoded in instructions here scale by the instruction
// size (4 bytes), effectively increasing their range by 2 bits.
unsigned Bits = 0;
switch (Opc) {
default:
continue; // Ignore other JT branches
case AArch64::TBZxii:
case AArch64::TBZwii:
case AArch64::TBNZxii:
case AArch64::TBNZwii:
IsCond = true;
Bits = 14 + 2;
break;
case AArch64::Bcc:
case AArch64::CBZx:
case AArch64::CBZw:
case AArch64::CBNZx:
case AArch64::CBNZw:
IsCond = true;
Bits = 19 + 2;
break;
case AArch64::Bimm:
Bits = 26 + 2;
break;
}
// Record this immediate branch.
ImmBranches.push_back(ImmBranch(I, Bits, IsCond));
}
}
}
}
/// Compute the size and some alignment information for MBB. This function
/// updates BBInfo directly.
void AArch64BranchFixup::computeBlockSize(MachineBasicBlock *MBB) {
BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
BBI.Size = 0;
BBI.Unalign = 0;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) {
BBI.Size += TII->getInstSizeInBytes(*I);
// For inline asm, GetInstSizeInBytes returns a conservative estimate.
// The actual size may be smaller, but still a multiple of the instr size.
if (I->isInlineAsm())
BBI.Unalign = 2;
}
}
/// Return the current offset of the specified machine instruction from the
/// start of the function. This offset changes as stuff is moved around inside
/// the function.
unsigned AArch64BranchFixup::getOffsetOf(MachineInstr *MI) const {
MachineBasicBlock *MBB = MI->getParent();
// The offset is composed of two things: the sum of the sizes of all MBB's
// before this instruction's block, and the offset from the start of the block
// it is in.
unsigned Offset = BBInfo[MBB->getNumber()].Offset;
// Sum instructions before MI in MBB.
for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
Offset += TII->getInstSizeInBytes(*I);
}
return Offset;
}
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *
AArch64BranchFixup::splitBlockBeforeInstr(MachineInstr *MI) {
MachineBasicBlock *OrigBB = MI->getParent();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
MF->insert(MBBI, NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
BuildMI(OrigBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewBB);
++NumSplit;
// Update the CFG. All succs of OrigBB are now succs of NewBB.
NewBB->transferSuccessors(OrigBB);
// OrigBB branches to NewBB.
OrigBB->addSuccessor(NewBB);
// Update internal data structures to account for the newly inserted MBB.
MF->RenumberBlocks(NewBB);
// Insert an entry into BBInfo to align it properly with the (newly
// renumbered) block numbers.
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
// Figure out how large the OrigBB is. As the first half of the original
// block, it cannot contain a tablejump. The size includes
// the new jump we added. (It should be possible to do this without
// recounting everything, but it's very confusing, and this is rarely
// executed.)
computeBlockSize(OrigBB);
// Figure out how large the NewMBB is. As the second half of the original
// block, it may contain a tablejump.
computeBlockSize(NewBB);
// All BBOffsets following these blocks must be modified.
adjustBBOffsetsAfter(OrigBB);
return NewBB;
}
void AArch64BranchFixup::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
unsigned BBNum = BB->getNumber();
for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
// Get the offset and known bits at the end of the layout predecessor.
// Include the alignment of the current block.
unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
// This is where block i begins. Stop if the offset is already correct,
// and we have updated 2 blocks. This is the maximum number of blocks
// changed before calling this function.
if (i > BBNum + 2 &&
BBInfo[i].Offset == Offset &&
BBInfo[i].KnownBits == KnownBits)
break;
BBInfo[i].Offset = Offset;
BBInfo[i].KnownBits = KnownBits;
}
}
/// Returns true if the distance between specific MI and specific BB can fit in
/// MI's displacement field.
bool AArch64BranchFixup::isBBInRange(MachineInstr *MI,
MachineBasicBlock *DestBB,
unsigned OffsetBits) {
int64_t BrOffset = getOffsetOf(MI);
int64_t DestOffset = BBInfo[DestBB->getNumber()].Offset;
DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
<< " from BB#" << MI->getParent()->getNumber()
<< " bits available=" << OffsetBits
<< " from " << getOffsetOf(MI) << " to " << DestOffset
<< " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
return isIntN(OffsetBits, DestOffset - BrOffset);
}
/// Fix up an immediate branch whose destination is too far away to fit in its
/// displacement field.
bool AArch64BranchFixup::fixupImmediateBr(ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *DestBB = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isMBB()) {
DestBB = MI->getOperand(i).getMBB();
break;
}
}
assert(DestBB && "Branch with no destination BB?");
// Check to see if the DestBB is already in-range.
if (isBBInRange(MI, DestBB, Br.OffsetBits))
return false;
assert(Br.IsCond && "Only conditional branches should need fixup");
return fixupConditionalBr(Br);
}
/// Fix up a conditional branch whose destination is too far away to fit in its
/// displacement field. It is converted to an inverse conditional branch + an
/// unconditional branch to the destination.
bool
AArch64BranchFixup::fixupConditionalBr(ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *MBB = MI->getParent();
unsigned CondBrMBBOperand = 0;
// The general idea is to add an unconditional branch to the destination and
// invert the conditional branch to jump over it. Complications occur around
// fallthrough and unreachable ends to the block.
// b.lt L1
// =>
// b.ge L2
// b L1
// L2:
// First we invert the conditional branch, by creating a replacement if
// necessary. This if statement contains all the special handling of different
// branch types.
if (MI->getOpcode() == AArch64::Bcc) {
// The basic block is operand number 1 for Bcc
CondBrMBBOperand = 1;
A64CC::CondCodes CC = (A64CC::CondCodes)MI->getOperand(0).getImm();
CC = A64InvertCondCode(CC);
MI->getOperand(0).setImm(CC);
} else {
MachineInstrBuilder InvertedMI;
int InvertedOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown branch type");
case AArch64::TBZxii: InvertedOpcode = AArch64::TBNZxii; break;
case AArch64::TBZwii: InvertedOpcode = AArch64::TBNZwii; break;
case AArch64::TBNZxii: InvertedOpcode = AArch64::TBZxii; break;
case AArch64::TBNZwii: InvertedOpcode = AArch64::TBZwii; break;
case AArch64::CBZx: InvertedOpcode = AArch64::CBNZx; break;
case AArch64::CBZw: InvertedOpcode = AArch64::CBNZw; break;
case AArch64::CBNZx: InvertedOpcode = AArch64::CBZx; break;
case AArch64::CBNZw: InvertedOpcode = AArch64::CBZw; break;
}
InvertedMI = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(InvertedOpcode));
for (unsigned i = 0, e= MI->getNumOperands(); i != e; ++i) {
InvertedMI.addOperand(MI->getOperand(i));
if (MI->getOperand(i).isMBB())
CondBrMBBOperand = i;
}
MI->eraseFromParent();
MI = Br.MI = InvertedMI;
}
// If the branch is at the end of its MBB and that has a fall-through block,
// direct the updated conditional branch to the fall-through
// block. Otherwise, split the MBB before the next instruction.
MachineInstr *BMI = &MBB->back();
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
++NumCBrFixed;
if (BMI != MI) {
if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
BMI->getOpcode() == AArch64::Bimm) {
// Last MI in the BB is an unconditional branch. We can swap destinations:
// b.eq L1 (temporarily b.ne L1 after first change)
// b L2
// =>
// b.ne L2
// b L1
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
if (isBBInRange(MI, NewDest, Br.OffsetBits)) {
DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
<< *BMI);
MachineBasicBlock *DestBB = MI->getOperand(CondBrMBBOperand).getMBB();
BMI->getOperand(0).setMBB(DestBB);
MI->getOperand(CondBrMBBOperand).setMBB(NewDest);
return true;
}
}
}
if (NeedSplit) {
MachineBasicBlock::iterator MBBI = MI; ++MBBI;
splitBlockBeforeInstr(MBBI);
// No need for the branch to the next block. We're adding an unconditional
// branch to the destination.
int delta = TII->getInstSizeInBytes(MBB->back());
BBInfo[MBB->getNumber()].Size -= delta;
MBB->back().eraseFromParent();
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
}
// After splitting and removing the unconditional branch from the original BB,
// the structure is now:
// oldbb:
// [things]
// b.invertedCC L1
// splitbb/fallthroughbb:
// [old b L2/real continuation]
//
// We now have to change the conditional branch to point to splitbb and add an
// unconditional branch after it to L1, giving the final structure:
// oldbb:
// [things]
// b.invertedCC splitbb
// b L1
// splitbb/fallthroughbb:
// [old b L2/real continuation]
MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
DEBUG(dbgs() << " Insert B to BB#"
<< MI->getOperand(CondBrMBBOperand).getMBB()->getNumber()
<< " also invert condition and change dest. to BB#"
<< NextBB->getNumber() << "\n");
// Insert a new unconditional branch and fixup the destination of the
// conditional one. Also update the ImmBranch as well as adding a new entry
// for the new branch.
BuildMI(MBB, DebugLoc(), TII->get(AArch64::Bimm))
.addMBB(MI->getOperand(CondBrMBBOperand).getMBB());
MI->getOperand(CondBrMBBOperand).setMBB(NextBB);
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
// 26 bits written down in Bimm, specifying a multiple of 4.
unsigned OffsetBits = 26 + 2;
ImmBranches.push_back(ImmBranch(&MBB->back(), OffsetBits, false));
adjustBBOffsetsAfter(MBB);
return true;
}