llvm-6502/lib/Target/ARM64/AsmParser/ARM64AsmParser.cpp
Tim Northover 09b3bd8ca3 AArch64/ARM64: make NEON vector list parsing a bit more robust
It doesn't change the results, but it seems silly not to diagnose obvious
problems early on.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208083 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-06 12:50:51 +00:00

4706 lines
160 KiB
C++

//===-- ARM64AsmParser.cpp - Parse ARM64 assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARM64AddressingModes.h"
#include "MCTargetDesc/ARM64MCExpr.h"
#include "Utils/ARM64BaseInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include <cstdio>
using namespace llvm;
namespace {
class ARM64Operand;
class ARM64AsmParser : public MCTargetAsmParser {
public:
typedef SmallVectorImpl<MCParsedAsmOperand *> OperandVector;
private:
StringRef Mnemonic; ///< Instruction mnemonic.
MCSubtargetInfo &STI;
MCAsmParser &Parser;
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
SMLoc getLoc() const { return Parser.getTok().getLoc(); }
bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
unsigned parseCondCodeString(StringRef Cond);
bool parseCondCode(OperandVector &Operands, bool invertCondCode);
int tryParseRegister();
int tryMatchVectorRegister(StringRef &Kind, bool expected);
bool parseOptionalShift(OperandVector &Operands);
bool parseOptionalExtend(OperandVector &Operands);
bool parseRegister(OperandVector &Operands);
bool parseMemory(OperandVector &Operands);
bool parseSymbolicImmVal(const MCExpr *&ImmVal);
bool parseVectorList(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode);
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool showMatchError(SMLoc Loc, unsigned ErrCode);
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveTLSDescCall(SMLoc L);
bool parseDirectiveLOH(StringRef LOH, SMLoc L);
bool validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
unsigned &ErrorInfo,
bool MatchingInlineAsm) override;
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARM64GenAsmMatcher.inc"
/// }
OperandMatchResultTy tryParseNoIndexMemory(OperandVector &Operands);
OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
bool tryParseVectorRegister(OperandVector &Operands);
public:
enum ARM64MatchResultTy {
Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "ARM64GenAsmMatcher.inc"
};
ARM64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand *Op,
unsigned Kind) override;
static bool classifySymbolRef(const MCExpr *Expr,
ARM64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend);
};
} // end anonymous namespace
namespace {
/// ARM64Operand - Instances of this class represent a parsed ARM64 machine
/// instruction.
class ARM64Operand : public MCParsedAsmOperand {
public:
enum MemIdxKindTy {
ImmediateOffset, // pre-indexed, no writeback
RegisterOffset // register offset, with optional extend
};
private:
enum KindTy {
k_Immediate,
k_Memory,
k_Register,
k_VectorList,
k_VectorIndex,
k_Token,
k_SysReg,
k_SysCR,
k_Prefetch,
k_Shifter,
k_Extend,
k_FPImm,
k_Barrier
} Kind;
SMLoc StartLoc, EndLoc, OffsetLoc;
struct TokOp {
const char *Data;
unsigned Length;
bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
};
struct RegOp {
unsigned RegNum;
bool isVector;
};
struct VectorListOp {
unsigned RegNum;
unsigned Count;
unsigned NumElements;
unsigned ElementKind;
};
struct VectorIndexOp {
unsigned Val;
};
struct ImmOp {
const MCExpr *Val;
};
struct FPImmOp {
unsigned Val; // Encoded 8-bit representation.
};
struct BarrierOp {
unsigned Val; // Not the enum since not all values have names.
};
struct SysRegOp {
const char *Data;
unsigned Length;
uint64_t FeatureBits; // We need to pass through information about which
// core we are compiling for so that the SysReg
// Mappers can appropriately conditionalize.
};
struct SysCRImmOp {
unsigned Val;
};
struct PrefetchOp {
unsigned Val;
};
struct ShifterOp {
unsigned Val;
};
struct ExtendOp {
unsigned Val;
};
// This is for all forms of ARM64 address expressions
struct MemOp {
unsigned BaseRegNum, OffsetRegNum;
ARM64_AM::ExtendType ExtType;
unsigned ShiftVal;
bool ExplicitShift;
const MCExpr *OffsetImm;
MemIdxKindTy Mode;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct VectorListOp VectorList;
struct VectorIndexOp VectorIndex;
struct ImmOp Imm;
struct FPImmOp FPImm;
struct BarrierOp Barrier;
struct SysRegOp SysReg;
struct SysCRImmOp SysCRImm;
struct PrefetchOp Prefetch;
struct ShifterOp Shifter;
struct ExtendOp Extend;
struct MemOp Mem;
};
// Keep the MCContext around as the MCExprs may need manipulated during
// the add<>Operands() calls.
MCContext &Ctx;
ARM64Operand(KindTy K, MCContext &_Ctx)
: MCParsedAsmOperand(), Kind(K), Ctx(_Ctx) {}
public:
ARM64Operand(const ARM64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case k_Token:
Tok = o.Tok;
break;
case k_Immediate:
Imm = o.Imm;
break;
case k_FPImm:
FPImm = o.FPImm;
break;
case k_Barrier:
Barrier = o.Barrier;
break;
case k_Register:
Reg = o.Reg;
break;
case k_VectorList:
VectorList = o.VectorList;
break;
case k_VectorIndex:
VectorIndex = o.VectorIndex;
break;
case k_SysReg:
SysReg = o.SysReg;
break;
case k_SysCR:
SysCRImm = o.SysCRImm;
break;
case k_Prefetch:
Prefetch = o.Prefetch;
break;
case k_Memory:
Mem = o.Mem;
break;
case k_Shifter:
Shifter = o.Shifter;
break;
case k_Extend:
Extend = o.Extend;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
/// getOffsetLoc - Get the location of the offset of this memory operand.
SMLoc getOffsetLoc() const { return OffsetLoc; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
bool isTokenSuffix() const {
assert(Kind == k_Token && "Invalid access!");
return Tok.IsSuffix;
}
const MCExpr *getImm() const {
assert(Kind == k_Immediate && "Invalid access!");
return Imm.Val;
}
unsigned getFPImm() const {
assert(Kind == k_FPImm && "Invalid access!");
return FPImm.Val;
}
unsigned getBarrier() const {
assert(Kind == k_Barrier && "Invalid access!");
return Barrier.Val;
}
unsigned getReg() const override {
assert(Kind == k_Register && "Invalid access!");
return Reg.RegNum;
}
unsigned getVectorListStart() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.RegNum;
}
unsigned getVectorListCount() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.Count;
}
unsigned getVectorIndex() const {
assert(Kind == k_VectorIndex && "Invalid access!");
return VectorIndex.Val;
}
StringRef getSysReg() const {
assert(Kind == k_SysReg && "Invalid access!");
return StringRef(SysReg.Data, SysReg.Length);
}
uint64_t getSysRegFeatureBits() const {
assert(Kind == k_SysReg && "Invalid access!");
return SysReg.FeatureBits;
}
unsigned getSysCR() const {
assert(Kind == k_SysCR && "Invalid access!");
return SysCRImm.Val;
}
unsigned getPrefetch() const {
assert(Kind == k_Prefetch && "Invalid access!");
return Prefetch.Val;
}
unsigned getShifter() const {
assert(Kind == k_Shifter && "Invalid access!");
return Shifter.Val;
}
unsigned getExtend() const {
assert(Kind == k_Extend && "Invalid access!");
return Extend.Val;
}
bool isImm() const override { return Kind == k_Immediate; }
bool isSImm9() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -256 && Val < 256);
}
bool isSImm7s4() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -256 && Val <= 252 && (Val & 3) == 0);
}
bool isSImm7s8() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -512 && Val <= 504 && (Val & 7) == 0);
}
bool isSImm7s16() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -1024 && Val <= 1008 && (Val & 15) == 0);
}
bool isImm0_7() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 8);
}
bool isImm1_8() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val > 0 && Val < 9);
}
bool isImm0_15() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 16);
}
bool isImm1_16() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val > 0 && Val < 17);
}
bool isImm0_31() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 32);
}
bool isImm1_31() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 32);
}
bool isImm1_32() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 33);
}
bool isImm0_63() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 64);
}
bool isImm1_63() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 64);
}
bool isImm1_64() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 65);
}
bool isImm0_127() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 128);
}
bool isImm0_255() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 256);
}
bool isImm0_65535() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 65536);
}
bool isLogicalImm32() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return ARM64_AM::isLogicalImmediate(MCE->getValue(), 32);
}
bool isLogicalImm64() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return ARM64_AM::isLogicalImmediate(MCE->getValue(), 64);
}
bool isSIMDImmType10() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return ARM64_AM::isAdvSIMDModImmType10(MCE->getValue());
}
bool isBranchTarget26() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x2000000 << 2) && Val <= (0x1ffffff << 2));
}
bool isPCRelLabel19() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x40000 << 2) && Val <= (0x3ffff << 2));
}
bool isBranchTarget14() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x2000 << 2) && Val <= (0x1fff << 2));
}
bool isMovWSymbol(ArrayRef<ARM64MCExpr::VariantKind> AllowedModifiers) const {
if (!isImm())
return false;
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!ARM64AsmParser::classifySymbolRef(getImm(), ELFRefKind, DarwinRefKind,
Addend)) {
return false;
}
if (DarwinRefKind != MCSymbolRefExpr::VK_None)
return false;
for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
if (ELFRefKind == AllowedModifiers[i])
return Addend == 0;
}
return false;
}
bool isMovZSymbolG3() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G3 };
return isMovWSymbol(Variants);
}
bool isMovZSymbolG2() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G2,
ARM64MCExpr::VK_ABS_G2_S,
ARM64MCExpr::VK_TPREL_G2,
ARM64MCExpr::VK_DTPREL_G2 };
return isMovWSymbol(Variants);
}
bool isMovZSymbolG1() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G1,
ARM64MCExpr::VK_ABS_G1_S,
ARM64MCExpr::VK_GOTTPREL_G1,
ARM64MCExpr::VK_TPREL_G1,
ARM64MCExpr::VK_DTPREL_G1, };
return isMovWSymbol(Variants);
}
bool isMovZSymbolG0() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G0,
ARM64MCExpr::VK_ABS_G0_S,
ARM64MCExpr::VK_TPREL_G0,
ARM64MCExpr::VK_DTPREL_G0 };
return isMovWSymbol(Variants);
}
bool isMovKSymbolG3() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G3 };
return isMovWSymbol(Variants);
}
bool isMovKSymbolG2() const {
static ARM64MCExpr::VariantKind Variants[] = { ARM64MCExpr::VK_ABS_G2_NC };
return isMovWSymbol(Variants);
}
bool isMovKSymbolG1() const {
static ARM64MCExpr::VariantKind Variants[] = {
ARM64MCExpr::VK_ABS_G1_NC, ARM64MCExpr::VK_TPREL_G1_NC,
ARM64MCExpr::VK_DTPREL_G1_NC
};
return isMovWSymbol(Variants);
}
bool isMovKSymbolG0() const {
static ARM64MCExpr::VariantKind Variants[] = {
ARM64MCExpr::VK_ABS_G0_NC, ARM64MCExpr::VK_GOTTPREL_G0_NC,
ARM64MCExpr::VK_TPREL_G0_NC, ARM64MCExpr::VK_DTPREL_G0_NC
};
return isMovWSymbol(Variants);
}
bool isFPImm() const { return Kind == k_FPImm; }
bool isBarrier() const { return Kind == k_Barrier; }
bool isSysReg() const { return Kind == k_SysReg; }
bool isMRSSystemRegister() const {
if (!isSysReg()) return false;
bool IsKnownRegister;
auto Mapper = ARM64SysReg::MRSMapper(getSysRegFeatureBits());
Mapper.fromString(getSysReg(), IsKnownRegister);
return IsKnownRegister;
}
bool isMSRSystemRegister() const {
if (!isSysReg()) return false;
bool IsKnownRegister;
auto Mapper = ARM64SysReg::MSRMapper(getSysRegFeatureBits());
Mapper.fromString(getSysReg(), IsKnownRegister);
return IsKnownRegister;
}
bool isSystemPStateField() const {
if (!isSysReg()) return false;
bool IsKnownRegister;
ARM64PState::PStateMapper().fromString(getSysReg(), IsKnownRegister);
return IsKnownRegister;
}
bool isReg() const override { return Kind == k_Register && !Reg.isVector; }
bool isVectorReg() const { return Kind == k_Register && Reg.isVector; }
bool isVectorRegLo() const {
return Kind == k_Register && Reg.isVector &&
ARM64MCRegisterClasses[ARM64::FPR128_loRegClassID].contains(Reg.RegNum);
}
/// Is this a vector list with the type implicit (presumably attached to the
/// instruction itself)?
template <unsigned NumRegs> bool isImplicitlyTypedVectorList() const {
return Kind == k_VectorList && VectorList.Count == NumRegs &&
!VectorList.ElementKind;
}
template <unsigned NumRegs, unsigned NumElements, char ElementKind>
bool isTypedVectorList() const {
if (Kind != k_VectorList)
return false;
if (VectorList.Count != NumRegs)
return false;
if (VectorList.ElementKind != ElementKind)
return false;
return VectorList.NumElements == NumElements;
}
bool isVectorIndexB() const {
return Kind == k_VectorIndex && VectorIndex.Val < 16;
}
bool isVectorIndexH() const {
return Kind == k_VectorIndex && VectorIndex.Val < 8;
}
bool isVectorIndexS() const {
return Kind == k_VectorIndex && VectorIndex.Val < 4;
}
bool isVectorIndexD() const {
return Kind == k_VectorIndex && VectorIndex.Val < 2;
}
bool isToken() const override { return Kind == k_Token; }
bool isTokenEqual(StringRef Str) const {
return Kind == k_Token && getToken() == Str;
}
bool isMem() const override { return Kind == k_Memory; }
bool isSysCR() const { return Kind == k_SysCR; }
bool isPrefetch() const { return Kind == k_Prefetch; }
bool isShifter() const { return Kind == k_Shifter; }
bool isExtend() const {
// lsl is an alias for UXTW but will be a parsed as a k_Shifter operand.
if (isShifter()) {
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val);
return ST == ARM64_AM::LSL;
}
return Kind == k_Extend;
}
bool isExtend64() const {
if (Kind != k_Extend)
return false;
// UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class).
ARM64_AM::ExtendType ET = ARM64_AM::getArithExtendType(Extend.Val);
return ET != ARM64_AM::UXTX && ET != ARM64_AM::SXTX;
}
bool isExtendLSL64() const {
// lsl is an alias for UXTX but will be a parsed as a k_Shifter operand.
if (isShifter()) {
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val);
return ST == ARM64_AM::LSL;
}
if (Kind != k_Extend)
return false;
ARM64_AM::ExtendType ET = ARM64_AM::getArithExtendType(Extend.Val);
return ET == ARM64_AM::UXTX || ET == ARM64_AM::SXTX;
}
bool isArithmeticShifter() const {
if (!isShifter())
return false;
// An arithmetic shifter is LSL, LSR, or ASR.
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val);
return ST == ARM64_AM::LSL || ST == ARM64_AM::LSR || ST == ARM64_AM::ASR;
}
bool isMovImm32Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0, 16, 32, or 48.
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val);
if (ST != ARM64_AM::LSL)
return false;
uint64_t Val = ARM64_AM::getShiftValue(Shifter.Val);
return (Val == 0 || Val == 16);
}
bool isMovImm64Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0 or 16.
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(Shifter.Val);
if (ST != ARM64_AM::LSL)
return false;
uint64_t Val = ARM64_AM::getShiftValue(Shifter.Val);
return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
}
bool isAddSubShifter() const {
if (!isShifter())
return false;
// An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
unsigned Val = Shifter.Val;
return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL &&
(ARM64_AM::getShiftValue(Val) == 0 ||
ARM64_AM::getShiftValue(Val) == 12);
}
bool isLogicalVecShifter() const {
if (!isShifter())
return false;
// A logical vector shifter is a left shift by 0, 8, 16, or 24.
unsigned Val = Shifter.Val;
unsigned Shift = ARM64_AM::getShiftValue(Val);
return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL &&
(Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
}
bool isLogicalVecHalfWordShifter() const {
if (!isLogicalVecShifter())
return false;
// A logical vector shifter is a left shift by 0 or 8.
unsigned Val = Shifter.Val;
unsigned Shift = ARM64_AM::getShiftValue(Val);
return ARM64_AM::getShiftType(Val) == ARM64_AM::LSL &&
(Shift == 0 || Shift == 8);
}
bool isMoveVecShifter() const {
if (!isShifter())
return false;
// A logical vector shifter is a left shift by 8 or 16.
unsigned Val = Shifter.Val;
unsigned Shift = ARM64_AM::getShiftValue(Val);
return ARM64_AM::getShiftType(Val) == ARM64_AM::MSL &&
(Shift == 8 || Shift == 16);
}
bool isMemoryRegisterOffset8() const {
return isMem() && Mem.Mode == RegisterOffset && Mem.ShiftVal == 0;
}
bool isMemoryRegisterOffset16() const {
return isMem() && Mem.Mode == RegisterOffset &&
(Mem.ShiftVal == 0 || Mem.ShiftVal == 1);
}
bool isMemoryRegisterOffset32() const {
return isMem() && Mem.Mode == RegisterOffset &&
(Mem.ShiftVal == 0 || Mem.ShiftVal == 2);
}
bool isMemoryRegisterOffset64() const {
return isMem() && Mem.Mode == RegisterOffset &&
(Mem.ShiftVal == 0 || Mem.ShiftVal == 3);
}
bool isMemoryRegisterOffset128() const {
return isMem() && Mem.Mode == RegisterOffset &&
(Mem.ShiftVal == 0 || Mem.ShiftVal == 4);
}
bool isMemoryUnscaled() const {
if (!isMem())
return false;
if (Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
// Make sure the immediate value is valid.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
if (!CE)
return false;
// The offset must fit in a signed 9-bit unscaled immediate.
int64_t Value = CE->getValue();
return (Value >= -256 && Value < 256);
}
// Fallback unscaled operands are for aliases of LDR/STR that fall back
// to LDUR/STUR when the offset is not legal for the former but is for
// the latter. As such, in addition to checking for being a legal unscaled
// address, also check that it is not a legal scaled address. This avoids
// ambiguity in the matcher.
bool isMemoryUnscaledFB8() const {
return isMemoryUnscaled() && !isMemoryIndexed8();
}
bool isMemoryUnscaledFB16() const {
return isMemoryUnscaled() && !isMemoryIndexed16();
}
bool isMemoryUnscaledFB32() const {
return isMemoryUnscaled() && !isMemoryIndexed32();
}
bool isMemoryUnscaledFB64() const {
return isMemoryUnscaled() && !isMemoryIndexed64();
}
bool isMemoryUnscaledFB128() const {
return isMemoryUnscaled() && !isMemoryIndexed128();
}
bool isMemoryIndexed(unsigned Scale) const {
if (!isMem())
return false;
if (Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
// Make sure the immediate value is valid.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
if (CE) {
// The offset must be a positive multiple of the scale and in range of
// encoding with a 12-bit immediate.
int64_t Value = CE->getValue();
return (Value >= 0 && (Value % Scale) == 0 && Value <= (4095 * Scale));
}
// If it's not a constant, check for some expressions we know.
const MCExpr *Expr = Mem.OffsetImm;
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!ARM64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
Addend)) {
// If we don't understand the expression, assume the best and
// let the fixup and relocation code deal with it.
return true;
}
if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
ELFRefKind == ARM64MCExpr::VK_LO12 ||
ELFRefKind == ARM64MCExpr::VK_GOT_LO12 ||
ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == ARM64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == ARM64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == ARM64MCExpr::VK_GOTTPREL_LO12_NC ||
ELFRefKind == ARM64MCExpr::VK_TLSDESC_LO12) {
// Note that we don't range-check the addend. It's adjusted modulo page
// size when converted, so there is no "out of range" condition when using
// @pageoff.
return Addend >= 0 && (Addend % Scale) == 0;
} else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
// @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
return Addend == 0;
}
return false;
}
bool isMemoryIndexed128() const { return isMemoryIndexed(16); }
bool isMemoryIndexed64() const { return isMemoryIndexed(8); }
bool isMemoryIndexed32() const { return isMemoryIndexed(4); }
bool isMemoryIndexed16() const { return isMemoryIndexed(2); }
bool isMemoryIndexed8() const { return isMemoryIndexed(1); }
bool isMemoryNoIndex() const {
if (!isMem())
return false;
if (Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
// Make sure the immediate value is valid. Only zero is allowed.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
if (!CE || CE->getValue() != 0)
return false;
return true;
}
bool isMemorySIMDNoIndex() const {
if (!isMem())
return false;
if (Mem.Mode != ImmediateOffset)
return false;
return Mem.OffsetImm == nullptr;
}
bool isMemoryIndexedSImm9() const {
if (!isMem() || Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
assert(CE && "Non-constant pre-indexed offset!");
int64_t Value = CE->getValue();
return Value >= -256 && Value <= 255;
}
bool isMemoryIndexed32SImm7() const {
if (!isMem() || Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
assert(CE && "Non-constant pre-indexed offset!");
int64_t Value = CE->getValue();
return ((Value % 4) == 0) && Value >= -256 && Value <= 252;
}
bool isMemoryIndexed64SImm7() const {
if (!isMem() || Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
assert(CE && "Non-constant pre-indexed offset!");
int64_t Value = CE->getValue();
return ((Value % 8) == 0) && Value >= -512 && Value <= 504;
}
bool isMemoryIndexed128SImm7() const {
if (!isMem() || Mem.Mode != ImmediateOffset)
return false;
if (!Mem.OffsetImm)
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
assert(CE && "Non-constant pre-indexed offset!");
int64_t Value = CE->getValue();
return ((Value % 16) == 0) && Value >= -1024 && Value <= 1008;
}
bool isAdrpLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (4096 * (1LL << (21 - 1)));
int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
return (Val % 4096) == 0 && Val >= Min && Val <= Max;
}
return true;
}
bool isAdrLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (1LL << (21 - 1));
int64_t Max = ((1LL << (21 - 1)) - 1);
return Val >= Min && Val <= Max;
}
return true;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addVectorRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
template <unsigned NumRegs>
void addVectorList64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
static unsigned FirstRegs[] = { ARM64::D0, ARM64::D0_D1,
ARM64::D0_D1_D2, ARM64::D0_D1_D2_D3 };
unsigned FirstReg = FirstRegs[NumRegs - 1];
Inst.addOperand(
MCOperand::CreateReg(FirstReg + getVectorListStart() - ARM64::Q0));
}
template <unsigned NumRegs>
void addVectorList128Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
static unsigned FirstRegs[] = { ARM64::Q0, ARM64::Q0_Q1,
ARM64::Q0_Q1_Q2, ARM64::Q0_Q1_Q2_Q3 };
unsigned FirstReg = FirstRegs[NumRegs - 1];
Inst.addOperand(
MCOperand::CreateReg(FirstReg + getVectorListStart() - ARM64::Q0));
}
void addVectorIndexBOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addVectorIndexHOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addVectorIndexSOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addVectorIndexDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// If this is a pageoff symrefexpr with an addend, adjust the addend
// to be only the page-offset portion. Otherwise, just add the expr
// as-is.
addExpr(Inst, getImm());
}
void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
addExpr(Inst, getImm());
else
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 12));
}
void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
addImmOperands(Inst, N);
}
void addSImm9Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addSImm7s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 4));
}
void addSImm7s8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 8));
}
void addSImm7s16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() / 16));
}
void addImm0_7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_63Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_63Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm1_64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_127Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_255Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addImm0_65535Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue()));
}
void addLogicalImm32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid logical immediate operand!");
uint64_t encoding = ARM64_AM::encodeLogicalImmediate(MCE->getValue(), 32);
Inst.addOperand(MCOperand::CreateImm(encoding));
}
void addLogicalImm64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid logical immediate operand!");
uint64_t encoding = ARM64_AM::encodeLogicalImmediate(MCE->getValue(), 64);
Inst.addOperand(MCOperand::CreateImm(encoding));
}
void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid immediate operand!");
uint64_t encoding = ARM64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
Inst.addOperand(MCOperand::CreateImm(encoding));
}
void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
}
void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
}
void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::CreateImm(MCE->getValue() >> 2));
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getFPImm()));
}
void addBarrierOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getBarrier()));
}
void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
auto Mapper = ARM64SysReg::MRSMapper(getSysRegFeatureBits());
uint32_t Bits = Mapper.fromString(getSysReg(), Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
auto Mapper = ARM64SysReg::MSRMapper(getSysRegFeatureBits());
uint32_t Bits = Mapper.fromString(getSysReg(), Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addSystemPStateFieldOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
uint32_t Bits = ARM64PState::PStateMapper().fromString(getSysReg(), Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addSysCROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getSysCR()));
}
void addPrefetchOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getPrefetch()));
}
void addShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addArithmeticShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addMovImm32ShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addMovImm64ShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addAddSubShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addLogicalVecShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addLogicalVecHalfWordShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addMoveVecShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getShifter()));
}
void addExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// lsl is an alias for UXTW but will be a parsed as a k_Shifter operand.
if (isShifter()) {
assert(ARM64_AM::getShiftType(getShifter()) == ARM64_AM::LSL);
unsigned imm = getArithExtendImm(ARM64_AM::UXTW,
ARM64_AM::getShiftValue(getShifter()));
Inst.addOperand(MCOperand::CreateImm(imm));
} else
Inst.addOperand(MCOperand::CreateImm(getExtend()));
}
void addExtend64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getExtend()));
}
void addExtendLSL64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// lsl is an alias for UXTX but will be a parsed as a k_Shifter operand.
if (isShifter()) {
assert(ARM64_AM::getShiftType(getShifter()) == ARM64_AM::LSL);
unsigned imm = getArithExtendImm(ARM64_AM::UXTX,
ARM64_AM::getShiftValue(getShifter()));
Inst.addOperand(MCOperand::CreateImm(imm));
} else
Inst.addOperand(MCOperand::CreateImm(getExtend()));
}
void addMemoryRegisterOffsetOperands(MCInst &Inst, unsigned N, bool DoShift) {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(getXRegFromWReg(Mem.OffsetRegNum)));
unsigned ExtendImm = ARM64_AM::getMemExtendImm(Mem.ExtType, DoShift);
Inst.addOperand(MCOperand::CreateImm(ExtendImm));
}
void addMemoryRegisterOffset8Operands(MCInst &Inst, unsigned N) {
addMemoryRegisterOffsetOperands(Inst, N, Mem.ExplicitShift);
}
void addMemoryRegisterOffset16Operands(MCInst &Inst, unsigned N) {
addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 1);
}
void addMemoryRegisterOffset32Operands(MCInst &Inst, unsigned N) {
addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 2);
}
void addMemoryRegisterOffset64Operands(MCInst &Inst, unsigned N) {
addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 3);
}
void addMemoryRegisterOffset128Operands(MCInst &Inst, unsigned N) {
addMemoryRegisterOffsetOperands(Inst, N, Mem.ShiftVal == 4);
}
void addMemoryIndexedOperands(MCInst &Inst, unsigned N,
unsigned Scale) const {
// Add the base register operand.
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
if (!Mem.OffsetImm) {
// There isn't an offset.
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// Add the offset operand.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm)) {
assert(CE->getValue() % Scale == 0 &&
"Offset operand must be multiple of the scale!");
// The MCInst offset operand doesn't include the low bits (like the
// instruction encoding).
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / Scale));
}
// If this is a pageoff symrefexpr with an addend, the linker will
// do the scaling of the addend.
//
// Otherwise we don't know what this is, so just add the scaling divide to
// the expression and let the MC fixup evaluation code deal with it.
const MCExpr *Expr = Mem.OffsetImm;
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (Scale > 1 &&
(!ARM64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
Addend) ||
(Addend != 0 && DarwinRefKind != MCSymbolRefExpr::VK_PAGEOFF))) {
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(Scale, Ctx),
Ctx);
}
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addMemoryUnscaledOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryUnscaled() && "Invalid number of operands!");
// Add the base register operand.
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
// Add the offset operand.
if (!Mem.OffsetImm)
Inst.addOperand(MCOperand::CreateImm(0));
else {
// Only constant offsets supported.
const MCConstantExpr *CE = cast<MCConstantExpr>(Mem.OffsetImm);
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
}
}
void addMemoryIndexed128Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryIndexed128() && "Invalid number of operands!");
addMemoryIndexedOperands(Inst, N, 16);
}
void addMemoryIndexed64Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryIndexed64() && "Invalid number of operands!");
addMemoryIndexedOperands(Inst, N, 8);
}
void addMemoryIndexed32Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryIndexed32() && "Invalid number of operands!");
addMemoryIndexedOperands(Inst, N, 4);
}
void addMemoryIndexed16Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryIndexed16() && "Invalid number of operands!");
addMemoryIndexedOperands(Inst, N, 2);
}
void addMemoryIndexed8Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemoryIndexed8() && "Invalid number of operands!");
addMemoryIndexedOperands(Inst, N, 1);
}
void addMemoryNoIndexOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && isMemoryNoIndex() && "Invalid number of operands!");
// Add the base register operand (the offset is always zero, so ignore it).
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
}
void addMemorySIMDNoIndexOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && isMemorySIMDNoIndex() && "Invalid number of operands!");
// Add the base register operand (the offset is always zero, so ignore it).
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
}
void addMemoryWritebackIndexedOperands(MCInst &Inst, unsigned N,
unsigned Scale) const {
assert(N == 2 && "Invalid number of operands!");
// Add the base register operand.
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
// Add the offset operand.
int64_t Offset = 0;
if (Mem.OffsetImm) {
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.OffsetImm);
assert(CE && "Non-constant indexed offset operand!");
Offset = CE->getValue();
}
if (Scale != 1) {
assert(Offset % Scale == 0 &&
"Offset operand must be a multiple of the scale!");
Offset /= Scale;
}
Inst.addOperand(MCOperand::CreateImm(Offset));
}
void addMemoryIndexedSImm9Operands(MCInst &Inst, unsigned N) const {
addMemoryWritebackIndexedOperands(Inst, N, 1);
}
void addMemoryIndexed32SImm7Operands(MCInst &Inst, unsigned N) const {
addMemoryWritebackIndexedOperands(Inst, N, 4);
}
void addMemoryIndexed64SImm7Operands(MCInst &Inst, unsigned N) const {
addMemoryWritebackIndexedOperands(Inst, N, 8);
}
void addMemoryIndexed128SImm7Operands(MCInst &Inst, unsigned N) const {
addMemoryWritebackIndexedOperands(Inst, N, 16);
}
void print(raw_ostream &OS) const override;
static ARM64Operand *CreateToken(StringRef Str, bool IsSuffix, SMLoc S,
MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Token, Ctx);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->Tok.IsSuffix = IsSuffix;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARM64Operand *CreateReg(unsigned RegNum, bool isVector, SMLoc S,
SMLoc E, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Register, Ctx);
Op->Reg.RegNum = RegNum;
Op->Reg.isVector = isVector;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateVectorList(unsigned RegNum, unsigned Count,
unsigned NumElements, char ElementKind,
SMLoc S, SMLoc E, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_VectorList, Ctx);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.NumElements = NumElements;
Op->VectorList.ElementKind = ElementKind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_VectorIndex, Ctx);
Op->VectorIndex.Val = Idx;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E,
MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Immediate, Ctx);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateFPImm(unsigned Val, SMLoc S, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_FPImm, Ctx);
Op->FPImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARM64Operand *CreateBarrier(unsigned Val, SMLoc S, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Barrier, Ctx);
Op->Barrier.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARM64Operand *CreateSysReg(StringRef Str, SMLoc S,
uint64_t FeatureBits, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_SysReg, Ctx);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.FeatureBits = FeatureBits;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARM64Operand *CreateMem(unsigned BaseRegNum, const MCExpr *Off,
SMLoc S, SMLoc E, SMLoc OffsetLoc,
MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Memory, Ctx);
Op->Mem.BaseRegNum = BaseRegNum;
Op->Mem.OffsetRegNum = 0;
Op->Mem.OffsetImm = Off;
Op->Mem.ExtType = ARM64_AM::UXTX;
Op->Mem.ShiftVal = 0;
Op->Mem.ExplicitShift = false;
Op->Mem.Mode = ImmediateOffset;
Op->OffsetLoc = OffsetLoc;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateRegOffsetMem(unsigned BaseReg, unsigned OffsetReg,
ARM64_AM::ExtendType ExtType,
unsigned ShiftVal, bool ExplicitShift,
SMLoc S, SMLoc E, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Memory, Ctx);
Op->Mem.BaseRegNum = BaseReg;
Op->Mem.OffsetRegNum = OffsetReg;
Op->Mem.OffsetImm = nullptr;
Op->Mem.ExtType = ExtType;
Op->Mem.ShiftVal = ShiftVal;
Op->Mem.ExplicitShift = ExplicitShift;
Op->Mem.Mode = RegisterOffset;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateSysCR(unsigned Val, SMLoc S, SMLoc E,
MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_SysCR, Ctx);
Op->SysCRImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreatePrefetch(unsigned Val, SMLoc S, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Prefetch, Ctx);
Op->Prefetch.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARM64Operand *CreateShifter(ARM64_AM::ShiftType ShOp, unsigned Val,
SMLoc S, SMLoc E, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Shifter, Ctx);
Op->Shifter.Val = ARM64_AM::getShifterImm(ShOp, Val);
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARM64Operand *CreateExtend(ARM64_AM::ExtendType ExtOp, unsigned Val,
SMLoc S, SMLoc E, MCContext &Ctx) {
ARM64Operand *Op = new ARM64Operand(k_Extend, Ctx);
Op->Extend.Val = ARM64_AM::getArithExtendImm(ExtOp, Val);
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
};
} // end anonymous namespace.
void ARM64Operand::print(raw_ostream &OS) const {
switch (Kind) {
case k_FPImm:
OS << "<fpimm " << getFPImm() << "(" << ARM64_AM::getFPImmFloat(getFPImm())
<< ") >";
break;
case k_Barrier: {
bool Valid;
StringRef Name = ARM64DB::DBarrierMapper().toString(getBarrier(), Valid);
if (Valid)
OS << "<barrier " << Name << ">";
else
OS << "<barrier invalid #" << getBarrier() << ">";
break;
}
case k_Immediate:
getImm()->print(OS);
break;
case k_Memory:
OS << "<memory>";
break;
case k_Register:
OS << "<register " << getReg() << ">";
break;
case k_VectorList: {
OS << "<vectorlist ";
unsigned Reg = getVectorListStart();
for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
OS << Reg + i << " ";
OS << ">";
break;
}
case k_VectorIndex:
OS << "<vectorindex " << getVectorIndex() << ">";
break;
case k_SysReg:
OS << "<sysreg: " << getSysReg() << '>';
break;
case k_Token:
OS << "'" << getToken() << "'";
break;
case k_SysCR:
OS << "c" << getSysCR();
break;
case k_Prefetch: {
bool Valid;
StringRef Name = ARM64PRFM::PRFMMapper().toString(getPrefetch(), Valid);
if (Valid)
OS << "<prfop " << Name << ">";
else
OS << "<prfop invalid #" << getPrefetch() << ">";
break;
}
case k_Shifter: {
unsigned Val = getShifter();
OS << "<" << ARM64_AM::getShiftName(ARM64_AM::getShiftType(Val)) << " #"
<< ARM64_AM::getShiftValue(Val) << ">";
break;
}
case k_Extend: {
unsigned Val = getExtend();
OS << "<" << ARM64_AM::getExtendName(ARM64_AM::getArithExtendType(Val))
<< " #" << ARM64_AM::getArithShiftValue(Val) << ">";
break;
}
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static unsigned matchVectorRegName(StringRef Name) {
return StringSwitch<unsigned>(Name)
.Case("v0", ARM64::Q0)
.Case("v1", ARM64::Q1)
.Case("v2", ARM64::Q2)
.Case("v3", ARM64::Q3)
.Case("v4", ARM64::Q4)
.Case("v5", ARM64::Q5)
.Case("v6", ARM64::Q6)
.Case("v7", ARM64::Q7)
.Case("v8", ARM64::Q8)
.Case("v9", ARM64::Q9)
.Case("v10", ARM64::Q10)
.Case("v11", ARM64::Q11)
.Case("v12", ARM64::Q12)
.Case("v13", ARM64::Q13)
.Case("v14", ARM64::Q14)
.Case("v15", ARM64::Q15)
.Case("v16", ARM64::Q16)
.Case("v17", ARM64::Q17)
.Case("v18", ARM64::Q18)
.Case("v19", ARM64::Q19)
.Case("v20", ARM64::Q20)
.Case("v21", ARM64::Q21)
.Case("v22", ARM64::Q22)
.Case("v23", ARM64::Q23)
.Case("v24", ARM64::Q24)
.Case("v25", ARM64::Q25)
.Case("v26", ARM64::Q26)
.Case("v27", ARM64::Q27)
.Case("v28", ARM64::Q28)
.Case("v29", ARM64::Q29)
.Case("v30", ARM64::Q30)
.Case("v31", ARM64::Q31)
.Default(0);
}
static bool isValidVectorKind(StringRef Name) {
return StringSwitch<bool>(Name.lower())
.Case(".8b", true)
.Case(".16b", true)
.Case(".4h", true)
.Case(".8h", true)
.Case(".2s", true)
.Case(".4s", true)
.Case(".1d", true)
.Case(".2d", true)
.Case(".1q", true)
// Accept the width neutral ones, too, for verbose syntax. If those
// aren't used in the right places, the token operand won't match so
// all will work out.
.Case(".b", true)
.Case(".h", true)
.Case(".s", true)
.Case(".d", true)
.Default(false);
}
static void parseValidVectorKind(StringRef Name, unsigned &NumElements,
char &ElementKind) {
assert(isValidVectorKind(Name));
ElementKind = Name.lower()[Name.size() - 1];
NumElements = 0;
if (Name.size() == 2)
return;
// Parse the lane count
Name = Name.drop_front();
while (isdigit(Name.front())) {
NumElements = 10 * NumElements + (Name.front() - '0');
Name = Name.drop_front();
}
}
bool ARM64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = getLoc();
RegNo = tryParseRegister();
EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
return (RegNo == (unsigned)-1);
}
/// tryParseRegister - Try to parse a register name. The token must be an
/// Identifier when called, and if it is a register name the token is eaten and
/// the register is added to the operand list.
int ARM64AsmParser::tryParseRegister() {
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
std::string lowerCase = Tok.getString().lower();
unsigned RegNum = MatchRegisterName(lowerCase);
// Also handle a few aliases of registers.
if (RegNum == 0)
RegNum = StringSwitch<unsigned>(lowerCase)
.Case("fp", ARM64::FP)
.Case("lr", ARM64::LR)
.Case("x31", ARM64::XZR)
.Case("w31", ARM64::WZR)
.Default(0);
if (RegNum == 0)
return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
/// tryMatchVectorRegister - Try to parse a vector register name with optional
/// kind specifier. If it is a register specifier, eat the token and return it.
int ARM64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) {
if (Parser.getTok().isNot(AsmToken::Identifier)) {
TokError("vector register expected");
return -1;
}
StringRef Name = Parser.getTok().getString();
// If there is a kind specifier, it's separated from the register name by
// a '.'.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
unsigned RegNum = matchVectorRegName(Head);
if (RegNum) {
if (Next != StringRef::npos) {
Kind = Name.slice(Next, StringRef::npos);
if (!isValidVectorKind(Kind)) {
TokError("invalid vector kind qualifier");
return -1;
}
}
Parser.Lex(); // Eat the register token.
return RegNum;
}
if (expected)
TokError("vector register expected");
return -1;
}
static int MatchSysCRName(StringRef Name) {
// Use the same layout as the tablegen'erated register name matcher. Ugly,
// but efficient.
switch (Name.size()) {
default:
break;
case 2:
if (Name[0] != 'c' && Name[0] != 'C')
return -1;
switch (Name[1]) {
default:
return -1;
case '0':
return 0;
case '1':
return 1;
case '2':
return 2;
case '3':
return 3;
case '4':
return 4;
case '5':
return 5;
case '6':
return 6;
case '7':
return 7;
case '8':
return 8;
case '9':
return 9;
}
break;
case 3:
if ((Name[0] != 'c' && Name[0] != 'C') || Name[1] != '1')
return -1;
switch (Name[2]) {
default:
return -1;
case '0':
return 10;
case '1':
return 11;
case '2':
return 12;
case '3':
return 13;
case '4':
return 14;
case '5':
return 15;
}
break;
}
llvm_unreachable("Unhandled SysCR operand string!");
return -1;
}
/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int Num = MatchSysCRName(Tok.getString());
if (Num == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARM64Operand::CreateSysCR(Num, S, getLoc(), getContext()));
return MatchOperand_Success;
}
/// tryParsePrefetch - Try to parse a prefetch operand.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParsePrefetch(OperandVector &Operands) {
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
// Either an identifier for named values or a 5-bit immediate.
bool Hash = Tok.is(AsmToken::Hash);
if (Hash || Tok.is(AsmToken::Integer)) {
if (Hash)
Parser.Lex(); // Eat hash token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for prefetch operand");
return MatchOperand_ParseFail;
}
unsigned prfop = MCE->getValue();
if (prfop > 31) {
TokError("prefetch operand out of range, [0,31] expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARM64Operand::CreatePrefetch(prfop, S, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("pre-fetch hint expected");
return MatchOperand_ParseFail;
}
bool Valid;
unsigned prfop = ARM64PRFM::PRFMMapper().fromString(Tok.getString(), Valid);
if (!Valid) {
TokError("pre-fetch hint expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARM64Operand::CreatePrefetch(prfop, S, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
/// instruction.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Expr;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash token.
}
if (parseSymbolicImmVal(Expr))
return MatchOperand_ParseFail;
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
ELFRefKind == ARM64MCExpr::VK_INVALID) {
// No modifier was specified at all; this is the syntax for an ELF basic
// ADRP relocation (unfortunately).
Expr = ARM64MCExpr::Create(Expr, ARM64MCExpr::VK_ABS_PAGE, getContext());
} else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
Addend != 0) {
Error(S, "gotpage label reference not allowed an addend");
return MatchOperand_ParseFail;
} else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
ELFRefKind != ARM64MCExpr::VK_GOT_PAGE &&
ELFRefKind != ARM64MCExpr::VK_GOTTPREL_PAGE &&
ELFRefKind != ARM64MCExpr::VK_TLSDESC_PAGE) {
// The operand must be an @page or @gotpage qualified symbolref.
Error(S, "page or gotpage label reference expected");
return MatchOperand_ParseFail;
}
}
// We have either a label reference possibly with addend or an immediate. The
// addend is a raw value here. The linker will adjust it to only reference the
// page.
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrLabel - Parse and validate a source label for the ADR
/// instruction.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Expr;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash token.
}
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseFPImm - A floating point immediate expression operand.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseFPImm(OperandVector &Operands) {
SMLoc S = getLoc();
bool Hash = false;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat '#'
Hash = true;
}
// Handle negation, as that still comes through as a separate token.
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex();
}
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 63;
int Val = ARM64_AM::getFP64Imm(APInt(64, IntVal));
Parser.Lex(); // Eat the token.
// Check for out of range values. As an exception, we let Zero through,
// as we handle that special case in post-processing before matching in
// order to use the zero register for it.
if (Val == -1 && !RealVal.isZero()) {
TokError("floating point value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARM64Operand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::Integer)) {
int64_t Val;
if (!isNegative && Tok.getString().startswith("0x")) {
Val = Tok.getIntVal();
if (Val > 255 || Val < 0) {
TokError("encoded floating point value out of range");
return MatchOperand_ParseFail;
}
} else {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 63;
Val = ARM64_AM::getFP64Imm(APInt(64, IntVal));
}
Parser.Lex(); // Eat the token.
Operands.push_back(ARM64Operand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
if (!Hash)
return MatchOperand_NoMatch;
TokError("invalid floating point immediate");
return MatchOperand_ParseFail;
}
/// parseCondCodeString - Parse a Condition Code string.
unsigned ARM64AsmParser::parseCondCodeString(StringRef Cond) {
unsigned CC = StringSwitch<unsigned>(Cond.lower())
.Case("eq", ARM64CC::EQ)
.Case("ne", ARM64CC::NE)
.Case("cs", ARM64CC::HS)
.Case("hs", ARM64CC::HS)
.Case("cc", ARM64CC::LO)
.Case("lo", ARM64CC::LO)
.Case("mi", ARM64CC::MI)
.Case("pl", ARM64CC::PL)
.Case("vs", ARM64CC::VS)
.Case("vc", ARM64CC::VC)
.Case("hi", ARM64CC::HI)
.Case("ls", ARM64CC::LS)
.Case("ge", ARM64CC::GE)
.Case("lt", ARM64CC::LT)
.Case("gt", ARM64CC::GT)
.Case("le", ARM64CC::LE)
.Case("al", ARM64CC::AL)
.Case("nv", ARM64CC::NV)
.Default(ARM64CC::Invalid);
return CC;
}
/// parseCondCode - Parse a Condition Code operand.
bool ARM64AsmParser::parseCondCode(OperandVector &Operands,
bool invertCondCode) {
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef Cond = Tok.getString();
unsigned CC = parseCondCodeString(Cond);
if (CC == ARM64CC::Invalid)
return TokError("invalid condition code");
Parser.Lex(); // Eat identifier token.
if (invertCondCode)
CC = ARM64CC::getInvertedCondCode(ARM64CC::CondCode(CC));
const MCExpr *CCExpr = MCConstantExpr::Create(CC, getContext());
Operands.push_back(
ARM64Operand::CreateImm(CCExpr, S, getLoc(), getContext()));
return false;
}
/// ParseOptionalShift - Some operands take an optional shift argument. Parse
/// them if present.
bool ARM64AsmParser::parseOptionalShift(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
ARM64_AM::ShiftType ShOp = StringSwitch<ARM64_AM::ShiftType>(Tok.getString())
.Case("lsl", ARM64_AM::LSL)
.Case("lsr", ARM64_AM::LSR)
.Case("asr", ARM64_AM::ASR)
.Case("ror", ARM64_AM::ROR)
.Case("msl", ARM64_AM::MSL)
.Case("LSL", ARM64_AM::LSL)
.Case("LSR", ARM64_AM::LSR)
.Case("ASR", ARM64_AM::ASR)
.Case("ROR", ARM64_AM::ROR)
.Case("MSL", ARM64_AM::MSL)
.Default(ARM64_AM::InvalidShift);
if (ShOp == ARM64_AM::InvalidShift)
return true;
SMLoc S = Tok.getLoc();
Parser.Lex();
// We expect a number here.
bool Hash = getLexer().is(AsmToken::Hash);
if (!Hash && getLexer().isNot(AsmToken::Integer))
return TokError("immediate value expected for shifter operand");
if (Hash)
Parser.Lex(); // Eat the '#'.
SMLoc ExprLoc = getLoc();
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE)
return TokError("immediate value expected for shifter operand");
if ((MCE->getValue() & 0x3f) != MCE->getValue())
return Error(ExprLoc, "immediate value too large for shifter operand");
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
ARM64Operand::CreateShifter(ShOp, MCE->getValue(), S, E, getContext()));
return false;
}
/// parseOptionalExtend - Some operands take an optional extend argument. Parse
/// them if present.
bool ARM64AsmParser::parseOptionalExtend(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
ARM64_AM::ExtendType ExtOp =
StringSwitch<ARM64_AM::ExtendType>(Tok.getString())
.Case("uxtb", ARM64_AM::UXTB)
.Case("uxth", ARM64_AM::UXTH)
.Case("uxtw", ARM64_AM::UXTW)
.Case("uxtx", ARM64_AM::UXTX)
.Case("lsl", ARM64_AM::UXTX) // Alias for UXTX
.Case("sxtb", ARM64_AM::SXTB)
.Case("sxth", ARM64_AM::SXTH)
.Case("sxtw", ARM64_AM::SXTW)
.Case("sxtx", ARM64_AM::SXTX)
.Case("UXTB", ARM64_AM::UXTB)
.Case("UXTH", ARM64_AM::UXTH)
.Case("UXTW", ARM64_AM::UXTW)
.Case("UXTX", ARM64_AM::UXTX)
.Case("LSL", ARM64_AM::UXTX) // Alias for UXTX
.Case("SXTB", ARM64_AM::SXTB)
.Case("SXTH", ARM64_AM::SXTH)
.Case("SXTW", ARM64_AM::SXTW)
.Case("SXTX", ARM64_AM::SXTX)
.Default(ARM64_AM::InvalidExtend);
if (ExtOp == ARM64_AM::InvalidExtend)
return true;
SMLoc S = Tok.getLoc();
Parser.Lex();
if (getLexer().is(AsmToken::EndOfStatement) ||
getLexer().is(AsmToken::Comma)) {
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
ARM64Operand::CreateExtend(ExtOp, 0, S, E, getContext()));
return false;
}
bool Hash = getLexer().is(AsmToken::Hash);
if (!Hash && getLexer().isNot(AsmToken::Integer)) {
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
ARM64Operand::CreateExtend(ExtOp, 0, S, E, getContext()));
return false;
}
if (Hash)
Parser.Lex(); // Eat the '#'.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE)
return TokError("immediate value expected for extend operand");
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
ARM64Operand::CreateExtend(ExtOp, MCE->getValue(), S, E, getContext()));
return false;
}
/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
bool ARM64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
if (Name.find('.') != StringRef::npos)
return TokError("invalid operand");
Mnemonic = Name;
Operands.push_back(
ARM64Operand::CreateToken("sys", false, NameLoc, getContext()));
const AsmToken &Tok = Parser.getTok();
StringRef Op = Tok.getString();
SMLoc S = Tok.getLoc();
const MCExpr *Expr = nullptr;
#define SYS_ALIAS(op1, Cn, Cm, op2) \
do { \
Expr = MCConstantExpr::Create(op1, getContext()); \
Operands.push_back( \
ARM64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
Operands.push_back( \
ARM64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); \
Operands.push_back( \
ARM64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); \
Expr = MCConstantExpr::Create(op2, getContext()); \
Operands.push_back( \
ARM64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
} while (0)
if (Mnemonic == "ic") {
if (!Op.compare_lower("ialluis")) {
// SYS #0, C7, C1, #0
SYS_ALIAS(0, 7, 1, 0);
} else if (!Op.compare_lower("iallu")) {
// SYS #0, C7, C5, #0
SYS_ALIAS(0, 7, 5, 0);
} else if (!Op.compare_lower("ivau")) {
// SYS #3, C7, C5, #1
SYS_ALIAS(3, 7, 5, 1);
} else {
return TokError("invalid operand for IC instruction");
}
} else if (Mnemonic == "dc") {
if (!Op.compare_lower("zva")) {
// SYS #3, C7, C4, #1
SYS_ALIAS(3, 7, 4, 1);
} else if (!Op.compare_lower("ivac")) {
// SYS #3, C7, C6, #1
SYS_ALIAS(0, 7, 6, 1);
} else if (!Op.compare_lower("isw")) {
// SYS #0, C7, C6, #2
SYS_ALIAS(0, 7, 6, 2);
} else if (!Op.compare_lower("cvac")) {
// SYS #3, C7, C10, #1
SYS_ALIAS(3, 7, 10, 1);
} else if (!Op.compare_lower("csw")) {
// SYS #0, C7, C10, #2
SYS_ALIAS(0, 7, 10, 2);
} else if (!Op.compare_lower("cvau")) {
// SYS #3, C7, C11, #1
SYS_ALIAS(3, 7, 11, 1);
} else if (!Op.compare_lower("civac")) {
// SYS #3, C7, C14, #1
SYS_ALIAS(3, 7, 14, 1);
} else if (!Op.compare_lower("cisw")) {
// SYS #0, C7, C14, #2
SYS_ALIAS(0, 7, 14, 2);
} else {
return TokError("invalid operand for DC instruction");
}
} else if (Mnemonic == "at") {
if (!Op.compare_lower("s1e1r")) {
// SYS #0, C7, C8, #0
SYS_ALIAS(0, 7, 8, 0);
} else if (!Op.compare_lower("s1e2r")) {
// SYS #4, C7, C8, #0
SYS_ALIAS(4, 7, 8, 0);
} else if (!Op.compare_lower("s1e3r")) {
// SYS #6, C7, C8, #0
SYS_ALIAS(6, 7, 8, 0);
} else if (!Op.compare_lower("s1e1w")) {
// SYS #0, C7, C8, #1
SYS_ALIAS(0, 7, 8, 1);
} else if (!Op.compare_lower("s1e2w")) {
// SYS #4, C7, C8, #1
SYS_ALIAS(4, 7, 8, 1);
} else if (!Op.compare_lower("s1e3w")) {
// SYS #6, C7, C8, #1
SYS_ALIAS(6, 7, 8, 1);
} else if (!Op.compare_lower("s1e0r")) {
// SYS #0, C7, C8, #3
SYS_ALIAS(0, 7, 8, 2);
} else if (!Op.compare_lower("s1e0w")) {
// SYS #0, C7, C8, #3
SYS_ALIAS(0, 7, 8, 3);
} else if (!Op.compare_lower("s12e1r")) {
// SYS #4, C7, C8, #4
SYS_ALIAS(4, 7, 8, 4);
} else if (!Op.compare_lower("s12e1w")) {
// SYS #4, C7, C8, #5
SYS_ALIAS(4, 7, 8, 5);
} else if (!Op.compare_lower("s12e0r")) {
// SYS #4, C7, C8, #6
SYS_ALIAS(4, 7, 8, 6);
} else if (!Op.compare_lower("s12e0w")) {
// SYS #4, C7, C8, #7
SYS_ALIAS(4, 7, 8, 7);
} else {
return TokError("invalid operand for AT instruction");
}
} else if (Mnemonic == "tlbi") {
if (!Op.compare_lower("vmalle1is")) {
// SYS #0, C8, C3, #0
SYS_ALIAS(0, 8, 3, 0);
} else if (!Op.compare_lower("alle2is")) {
// SYS #4, C8, C3, #0
SYS_ALIAS(4, 8, 3, 0);
} else if (!Op.compare_lower("alle3is")) {
// SYS #6, C8, C3, #0
SYS_ALIAS(6, 8, 3, 0);
} else if (!Op.compare_lower("vae1is")) {
// SYS #0, C8, C3, #1
SYS_ALIAS(0, 8, 3, 1);
} else if (!Op.compare_lower("vae2is")) {
// SYS #4, C8, C3, #1
SYS_ALIAS(4, 8, 3, 1);
} else if (!Op.compare_lower("vae3is")) {
// SYS #6, C8, C3, #1
SYS_ALIAS(6, 8, 3, 1);
} else if (!Op.compare_lower("aside1is")) {
// SYS #0, C8, C3, #2
SYS_ALIAS(0, 8, 3, 2);
} else if (!Op.compare_lower("vaae1is")) {
// SYS #0, C8, C3, #3
SYS_ALIAS(0, 8, 3, 3);
} else if (!Op.compare_lower("alle1is")) {
// SYS #4, C8, C3, #4
SYS_ALIAS(4, 8, 3, 4);
} else if (!Op.compare_lower("vale1is")) {
// SYS #0, C8, C3, #5
SYS_ALIAS(0, 8, 3, 5);
} else if (!Op.compare_lower("vaale1is")) {
// SYS #0, C8, C3, #7
SYS_ALIAS(0, 8, 3, 7);
} else if (!Op.compare_lower("vmalle1")) {
// SYS #0, C8, C7, #0
SYS_ALIAS(0, 8, 7, 0);
} else if (!Op.compare_lower("alle2")) {
// SYS #4, C8, C7, #0
SYS_ALIAS(4, 8, 7, 0);
} else if (!Op.compare_lower("vale2is")) {
// SYS #4, C8, C3, #5
SYS_ALIAS(4, 8, 3, 5);
} else if (!Op.compare_lower("vale3is")) {
// SYS #6, C8, C3, #5
SYS_ALIAS(6, 8, 3, 5);
} else if (!Op.compare_lower("alle3")) {
// SYS #6, C8, C7, #0
SYS_ALIAS(6, 8, 7, 0);
} else if (!Op.compare_lower("vae1")) {
// SYS #0, C8, C7, #1
SYS_ALIAS(0, 8, 7, 1);
} else if (!Op.compare_lower("vae2")) {
// SYS #4, C8, C7, #1
SYS_ALIAS(4, 8, 7, 1);
} else if (!Op.compare_lower("vae3")) {
// SYS #6, C8, C7, #1
SYS_ALIAS(6, 8, 7, 1);
} else if (!Op.compare_lower("aside1")) {
// SYS #0, C8, C7, #2
SYS_ALIAS(0, 8, 7, 2);
} else if (!Op.compare_lower("vaae1")) {
// SYS #0, C8, C7, #3
SYS_ALIAS(0, 8, 7, 3);
} else if (!Op.compare_lower("alle1")) {
// SYS #4, C8, C7, #4
SYS_ALIAS(4, 8, 7, 4);
} else if (!Op.compare_lower("vale1")) {
// SYS #0, C8, C7, #5
SYS_ALIAS(0, 8, 7, 5);
} else if (!Op.compare_lower("vale2")) {
// SYS #4, C8, C7, #5
SYS_ALIAS(4, 8, 7, 5);
} else if (!Op.compare_lower("vale3")) {
// SYS #6, C8, C7, #5
SYS_ALIAS(6, 8, 7, 5);
} else if (!Op.compare_lower("vaale1")) {
// SYS #0, C8, C7, #7
SYS_ALIAS(0, 8, 7, 7);
} else if (!Op.compare_lower("ipas2e1")) {
// SYS #4, C8, C4, #1
SYS_ALIAS(4, 8, 4, 1);
} else if (!Op.compare_lower("ipas2le1")) {
// SYS #4, C8, C4, #5
SYS_ALIAS(4, 8, 4, 5);
} else if (!Op.compare_lower("ipas2e1is")) {
// SYS #4, C8, C4, #1
SYS_ALIAS(4, 8, 0, 1);
} else if (!Op.compare_lower("ipas2le1is")) {
// SYS #4, C8, C4, #5
SYS_ALIAS(4, 8, 0, 5);
} else if (!Op.compare_lower("vmalls12e1")) {
// SYS #4, C8, C7, #6
SYS_ALIAS(4, 8, 7, 6);
} else if (!Op.compare_lower("vmalls12e1is")) {
// SYS #4, C8, C3, #6
SYS_ALIAS(4, 8, 3, 6);
} else {
return TokError("invalid operand for TLBI instruction");
}
}
#undef SYS_ALIAS
Parser.Lex(); // Eat operand.
bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
bool HasRegister = false;
// Check for the optional register operand.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma.
if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
return TokError("expected register operand");
HasRegister = true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Parser.eatToEndOfStatement();
return TokError("unexpected token in argument list");
}
if (ExpectRegister && !HasRegister) {
return TokError("specified " + Mnemonic + " op requires a register");
}
else if (!ExpectRegister && HasRegister) {
return TokError("specified " + Mnemonic + " op does not use a register");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
// Can be either a #imm style literal or an option name
bool Hash = Tok.is(AsmToken::Hash);
if (Hash || Tok.is(AsmToken::Integer)) {
// Immediate operand.
if (Hash)
Parser.Lex(); // Eat the '#'
const MCExpr *ImmVal;
SMLoc ExprLoc = getLoc();
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
Error(ExprLoc, "immediate value expected for barrier operand");
return MatchOperand_ParseFail;
}
if (MCE->getValue() < 0 || MCE->getValue() > 15) {
Error(ExprLoc, "barrier operand out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(
ARM64Operand::CreateBarrier(MCE->getValue(), ExprLoc, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
bool Valid;
unsigned Opt = ARM64DB::DBarrierMapper().fromString(Tok.getString(), Valid);
if (!Valid) {
TokError("invalid barrier option name");
return MatchOperand_ParseFail;
}
// The only valid named option for ISB is 'sy'
if (Mnemonic == "isb" && Opt != ARM64DB::SY) {
TokError("'sy' or #imm operand expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARM64Operand::CreateBarrier(Opt, getLoc(), getContext()));
Parser.Lex(); // Consume the option
return MatchOperand_Success;
}
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseSysReg(OperandVector &Operands) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
Operands.push_back(ARM64Operand::CreateSysReg(Tok.getString(), getLoc(),
STI.getFeatureBits(), getContext()));
Parser.Lex(); // Eat identifier
return MatchOperand_Success;
}
/// tryParseVectorRegister - Parse a vector register operand.
bool ARM64AsmParser::tryParseVectorRegister(OperandVector &Operands) {
if (Parser.getTok().isNot(AsmToken::Identifier))
return true;
SMLoc S = getLoc();
// Check for a vector register specifier first.
StringRef Kind;
int64_t Reg = tryMatchVectorRegister(Kind, false);
if (Reg == -1)
return true;
Operands.push_back(
ARM64Operand::CreateReg(Reg, true, S, getLoc(), getContext()));
// If there was an explicit qualifier, that goes on as a literal text
// operand.
if (!Kind.empty())
Operands.push_back(ARM64Operand::CreateToken(Kind, false, S, getContext()));
// If there is an index specifier following the register, parse that too.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return false;
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return false;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARM64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E,
getContext()));
}
return false;
}
/// parseRegister - Parse a non-vector register operand.
bool ARM64AsmParser::parseRegister(OperandVector &Operands) {
SMLoc S = getLoc();
// Try for a vector register.
if (!tryParseVectorRegister(Operands))
return false;
// Try for a scalar register.
int64_t Reg = tryParseRegister();
if (Reg == -1)
return true;
Operands.push_back(
ARM64Operand::CreateReg(Reg, false, S, getLoc(), getContext()));
// A small number of instructions (FMOVXDhighr, for example) have "[1]"
// as a string token in the instruction itself.
if (getLexer().getKind() == AsmToken::LBrac) {
SMLoc LBracS = getLoc();
Parser.Lex();
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Integer)) {
SMLoc IntS = getLoc();
int64_t Val = Tok.getIntVal();
if (Val == 1) {
Parser.Lex();
if (getLexer().getKind() == AsmToken::RBrac) {
SMLoc RBracS = getLoc();
Parser.Lex();
Operands.push_back(
ARM64Operand::CreateToken("[", false, LBracS, getContext()));
Operands.push_back(
ARM64Operand::CreateToken("1", false, IntS, getContext()));
Operands.push_back(
ARM64Operand::CreateToken("]", false, RBracS, getContext()));
return false;
}
}
}
}
return false;
}
/// tryParseNoIndexMemory - Custom parser method for memory operands that
/// do not allow base regisrer writeback modes,
/// or those that handle writeback separately from
/// the memory operand (like the AdvSIMD ldX/stX
/// instructions.
ARM64AsmParser::OperandMatchResultTy
ARM64AsmParser::tryParseNoIndexMemory(OperandVector &Operands) {
if (Parser.getTok().isNot(AsmToken::LBrac))
return MatchOperand_NoMatch;
SMLoc S = getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
if (BaseRegTok.isNot(AsmToken::Identifier)) {
Error(BaseRegTok.getLoc(), "register expected");
return MatchOperand_ParseFail;
}
int64_t Reg = tryParseRegister();
if (Reg == -1) {
Error(BaseRegTok.getLoc(), "register expected");
return MatchOperand_ParseFail;
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARM64Operand::CreateMem(Reg, nullptr, S, E, E, getContext()));
return MatchOperand_Success;
}
/// parseMemory - Parse a memory operand for a basic load/store instruction.
bool ARM64AsmParser::parseMemory(OperandVector &Operands) {
assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not a Left Bracket");
SMLoc S = getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
if (BaseRegTok.isNot(AsmToken::Identifier))
return Error(BaseRegTok.getLoc(), "register expected");
int64_t Reg = tryParseRegister();
if (Reg == -1)
return Error(BaseRegTok.getLoc(), "register expected");
// If there is an offset expression, parse it.
const MCExpr *OffsetExpr = nullptr;
SMLoc OffsetLoc;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
OffsetLoc = getLoc();
// Register offset
const AsmToken &OffsetRegTok = Parser.getTok();
int Reg2 = OffsetRegTok.is(AsmToken::Identifier) ? tryParseRegister() : -1;
if (Reg2 != -1) {
// Default shift is LSL, with an omitted shift. We use the third bit of
// the extend value to indicate presence/omission of the immediate offset.
ARM64_AM::ExtendType ExtOp = ARM64_AM::UXTX;
int64_t ShiftVal = 0;
bool ExplicitShift = false;
if (Parser.getTok().is(AsmToken::Comma)) {
// Embedded extend operand.
Parser.Lex(); // Eat the comma
SMLoc ExtLoc = getLoc();
const AsmToken &Tok = Parser.getTok();
ExtOp = StringSwitch<ARM64_AM::ExtendType>(Tok.getString())
.Case("uxtw", ARM64_AM::UXTW)
.Case("lsl", ARM64_AM::UXTX) // Alias for UXTX
.Case("sxtw", ARM64_AM::SXTW)
.Case("sxtx", ARM64_AM::SXTX)
.Case("UXTW", ARM64_AM::UXTW)
.Case("LSL", ARM64_AM::UXTX) // Alias for UXTX
.Case("SXTW", ARM64_AM::SXTW)
.Case("SXTX", ARM64_AM::SXTX)
.Default(ARM64_AM::InvalidExtend);
if (ExtOp == ARM64_AM::InvalidExtend)
return Error(ExtLoc, "expected valid extend operation");
Parser.Lex(); // Eat the extend op.
// A 32-bit offset register is only valid for [SU]/XTW extend
// operators.
if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg2)) {
if (ExtOp != ARM64_AM::UXTW &&
ExtOp != ARM64_AM::SXTW)
return Error(ExtLoc, "32-bit general purpose offset register "
"requires sxtw or uxtw extend");
} else if (!ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(
Reg2))
return Error(OffsetLoc,
"64-bit general purpose offset register expected");
bool Hash = getLexer().is(AsmToken::Hash);
if (getLexer().is(AsmToken::RBrac)) {
// No immediate operand.
if (ExtOp == ARM64_AM::UXTX)
return Error(ExtLoc, "LSL extend requires immediate operand");
} else if (Hash || getLexer().is(AsmToken::Integer)) {
// Immediate operand.
if (Hash)
Parser.Lex(); // Eat the '#'
const MCExpr *ImmVal;
SMLoc ExprLoc = getLoc();
if (getParser().parseExpression(ImmVal))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE)
return TokError("immediate value expected for extend operand");
ExplicitShift = true;
ShiftVal = MCE->getValue();
if (ShiftVal < 0 || ShiftVal > 4)
return Error(ExprLoc, "immediate operand out of range");
} else
return Error(getLoc(), "expected immediate operand");
}
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(getLoc(), "']' expected");
Parser.Lex(); // Eat right bracket token.
SMLoc E = getLoc();
Operands.push_back(ARM64Operand::CreateRegOffsetMem(
Reg, Reg2, ExtOp, ShiftVal, ExplicitShift, S, E, getContext()));
return false;
// Immediate expressions.
} else if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Colon) ||
Parser.getTok().is(AsmToken::Integer)) {
if (Parser.getTok().is(AsmToken::Hash))
Parser.Lex(); // Eat hash token.
if (parseSymbolicImmVal(OffsetExpr))
return true;
} else {
// FIXME: We really should make sure that we're dealing with a LDR/STR
// instruction that can legally have a symbolic expression here.
// Symbol reference.
if (Parser.getTok().isNot(AsmToken::Identifier) &&
Parser.getTok().isNot(AsmToken::String))
return Error(getLoc(), "identifier or immediate expression expected");
if (getParser().parseExpression(OffsetExpr))
return true;
// If this is a plain ref, Make sure a legal variant kind was specified.
// Otherwise, it's a more complicated expression and we have to just
// assume it's OK and let the relocation stuff puke if it's not.
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(OffsetExpr, ELFRefKind, DarwinRefKind, Addend) &&
Addend == 0) {
assert(ELFRefKind == ARM64MCExpr::VK_INVALID &&
"ELF symbol modifiers not supported here yet");
switch (DarwinRefKind) {
default:
return Error(getLoc(), "expected @pageoff or @gotpageoff modifier");
case MCSymbolRefExpr::VK_GOTPAGEOFF:
case MCSymbolRefExpr::VK_PAGEOFF:
case MCSymbolRefExpr::VK_TLVPPAGEOFF:
// These are what we're expecting.
break;
}
}
}
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
// Create the memory operand.
Operands.push_back(
ARM64Operand::CreateMem(Reg, OffsetExpr, S, E, OffsetLoc, getContext()));
// Check for a '!', indicating pre-indexed addressing with writeback.
if (Parser.getTok().is(AsmToken::Exclaim)) {
// There needs to have been an immediate or wback doesn't make sense.
if (!OffsetExpr)
return Error(E, "missing offset for pre-indexed addressing");
// Pre-indexed with writeback must have a constant expression for the
// offset. FIXME: Theoretically, we'd like to allow fixups so long
// as they don't require a relocation.
if (!isa<MCConstantExpr>(OffsetExpr))
return Error(OffsetLoc, "constant immediate expression expected");
// Create the Token operand for the '!'.
Operands.push_back(ARM64Operand::CreateToken(
"!", false, Parser.getTok().getLoc(), getContext()));
Parser.Lex(); // Eat the '!' token.
}
return false;
}
bool ARM64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
bool HasELFModifier = false;
ARM64MCExpr::VariantKind RefKind;
if (Parser.getTok().is(AsmToken::Colon)) {
Parser.Lex(); // Eat ':"
HasELFModifier = true;
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(),
"expect relocation specifier in operand after ':'");
return true;
}
std::string LowerCase = Parser.getTok().getIdentifier().lower();
RefKind = StringSwitch<ARM64MCExpr::VariantKind>(LowerCase)
.Case("lo12", ARM64MCExpr::VK_LO12)
.Case("abs_g3", ARM64MCExpr::VK_ABS_G3)
.Case("abs_g2", ARM64MCExpr::VK_ABS_G2)
.Case("abs_g2_s", ARM64MCExpr::VK_ABS_G2_S)
.Case("abs_g2_nc", ARM64MCExpr::VK_ABS_G2_NC)
.Case("abs_g1", ARM64MCExpr::VK_ABS_G1)
.Case("abs_g1_s", ARM64MCExpr::VK_ABS_G1_S)
.Case("abs_g1_nc", ARM64MCExpr::VK_ABS_G1_NC)
.Case("abs_g0", ARM64MCExpr::VK_ABS_G0)
.Case("abs_g0_s", ARM64MCExpr::VK_ABS_G0_S)
.Case("abs_g0_nc", ARM64MCExpr::VK_ABS_G0_NC)
.Case("dtprel_g2", ARM64MCExpr::VK_DTPREL_G2)
.Case("dtprel_g1", ARM64MCExpr::VK_DTPREL_G1)
.Case("dtprel_g1_nc", ARM64MCExpr::VK_DTPREL_G1_NC)
.Case("dtprel_g0", ARM64MCExpr::VK_DTPREL_G0)
.Case("dtprel_g0_nc", ARM64MCExpr::VK_DTPREL_G0_NC)
.Case("dtprel_hi12", ARM64MCExpr::VK_DTPREL_HI12)
.Case("dtprel_lo12", ARM64MCExpr::VK_DTPREL_LO12)
.Case("dtprel_lo12_nc", ARM64MCExpr::VK_DTPREL_LO12_NC)
.Case("tprel_g2", ARM64MCExpr::VK_TPREL_G2)
.Case("tprel_g1", ARM64MCExpr::VK_TPREL_G1)
.Case("tprel_g1_nc", ARM64MCExpr::VK_TPREL_G1_NC)
.Case("tprel_g0", ARM64MCExpr::VK_TPREL_G0)
.Case("tprel_g0_nc", ARM64MCExpr::VK_TPREL_G0_NC)
.Case("tprel_hi12", ARM64MCExpr::VK_TPREL_HI12)
.Case("tprel_lo12", ARM64MCExpr::VK_TPREL_LO12)
.Case("tprel_lo12_nc", ARM64MCExpr::VK_TPREL_LO12_NC)
.Case("tlsdesc_lo12", ARM64MCExpr::VK_TLSDESC_LO12)
.Case("got", ARM64MCExpr::VK_GOT_PAGE)
.Case("got_lo12", ARM64MCExpr::VK_GOT_LO12)
.Case("gottprel", ARM64MCExpr::VK_GOTTPREL_PAGE)
.Case("gottprel_lo12", ARM64MCExpr::VK_GOTTPREL_LO12_NC)
.Case("gottprel_g1", ARM64MCExpr::VK_GOTTPREL_G1)
.Case("gottprel_g0_nc", ARM64MCExpr::VK_GOTTPREL_G0_NC)
.Case("tlsdesc", ARM64MCExpr::VK_TLSDESC_PAGE)
.Default(ARM64MCExpr::VK_INVALID);
if (RefKind == ARM64MCExpr::VK_INVALID) {
Error(Parser.getTok().getLoc(),
"expect relocation specifier in operand after ':'");
return true;
}
Parser.Lex(); // Eat identifier
if (Parser.getTok().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "expect ':' after relocation specifier");
return true;
}
Parser.Lex(); // Eat ':'
}
if (getParser().parseExpression(ImmVal))
return true;
if (HasELFModifier)
ImmVal = ARM64MCExpr::Create(ImmVal, RefKind, getContext());
return false;
}
/// parseVectorList - Parse a vector list operand for AdvSIMD instructions.
bool ARM64AsmParser::parseVectorList(OperandVector &Operands) {
assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket");
SMLoc S = getLoc();
Parser.Lex(); // Eat left bracket token.
StringRef Kind;
int64_t FirstReg = tryMatchVectorRegister(Kind, true);
if (FirstReg == -1)
return true;
int64_t PrevReg = FirstReg;
unsigned Count = 1;
if (Parser.getTok().is(AsmToken::Minus)) {
Parser.Lex(); // Eat the minus.
SMLoc Loc = getLoc();
StringRef NextKind;
int64_t Reg = tryMatchVectorRegister(NextKind, true);
if (Reg == -1)
return true;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind)
return Error(Loc, "mismatched register size suffix");
unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);
if (Space == 0 || Space > 3) {
return Error(Loc, "invalid number of vectors");
}
Count += Space;
}
else {
while (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma token.
SMLoc Loc = getLoc();
StringRef NextKind;
int64_t Reg = tryMatchVectorRegister(NextKind, true);
if (Reg == -1)
return true;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind)
return Error(Loc, "mismatched register size suffix");
// Registers must be incremental (with wraparound at 31)
if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
(getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32)
return Error(Loc, "registers must be sequential");
PrevReg = Reg;
++Count;
}
}
if (Parser.getTok().isNot(AsmToken::RCurly))
return Error(getLoc(), "'}' expected");
Parser.Lex(); // Eat the '}' token.
if (Count > 4)
return Error(S, "invalid number of vectors");
unsigned NumElements = 0;
char ElementKind = 0;
if (!Kind.empty())
parseValidVectorKind(Kind, NumElements, ElementKind);
Operands.push_back(ARM64Operand::CreateVectorList(
FirstReg, Count, NumElements, ElementKind, S, getLoc(), getContext()));
// If there is an index specifier following the list, parse that too.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return false;
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return false;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARM64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E,
getContext()));
}
return false;
}
/// parseOperand - Parse a arm instruction operand. For now this parses the
/// operand regardless of the mnemonic.
bool ARM64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Nothing custom, so do general case parsing.
SMLoc S, E;
switch (getLexer().getKind()) {
default: {
SMLoc S = getLoc();
const MCExpr *Expr;
if (parseSymbolicImmVal(Expr))
return Error(S, "invalid operand");
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(ARM64Operand::CreateImm(Expr, S, E, getContext()));
return false;
}
case AsmToken::LBrac:
return parseMemory(Operands);
case AsmToken::LCurly:
return parseVectorList(Operands);
case AsmToken::Identifier: {
// If we're expecting a Condition Code operand, then just parse that.
if (isCondCode)
return parseCondCode(Operands, invertCondCode);
// If it's a register name, parse it.
if (!parseRegister(Operands))
return false;
// This could be an optional "shift" operand.
if (!parseOptionalShift(Operands))
return false;
// Or maybe it could be an optional "extend" operand.
if (!parseOptionalExtend(Operands))
return false;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = getLoc();
if (getParser().parseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(ARM64Operand::CreateImm(IdVal, S, E, getContext()));
return false;
}
case AsmToken::Integer:
case AsmToken::Real:
case AsmToken::Hash: {
// #42 -> immediate.
S = getLoc();
if (getLexer().is(AsmToken::Hash))
Parser.Lex();
// The only Real that should come through here is a literal #0.0 for
// the fcmp[e] r, #0.0 instructions. They expect raw token operands,
// so convert the value.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
Mnemonic != "fcmlt")
return TokError("unexpected floating point literal");
else if (IntVal != 0)
return TokError("only valid floating-point immediate is #0.0");
Parser.Lex(); // Eat the token.
Operands.push_back(
ARM64Operand::CreateToken("#0", false, S, getContext()));
Operands.push_back(
ARM64Operand::CreateToken(".0", false, S, getContext()));
return false;
}
const MCExpr *ImmVal;
if (parseSymbolicImmVal(ImmVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(ARM64Operand::CreateImm(ImmVal, S, E, getContext()));
return false;
}
}
}
/// ParseInstruction - Parse an ARM64 instruction mnemonic followed by its
/// operands.
bool ARM64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
Name = StringSwitch<StringRef>(Name.lower())
.Case("beq", "b.eq")
.Case("bne", "b.ne")
.Case("bhs", "b.hs")
.Case("bcs", "b.cs")
.Case("blo", "b.lo")
.Case("bcc", "b.cc")
.Case("bmi", "b.mi")
.Case("bpl", "b.pl")
.Case("bvs", "b.vs")
.Case("bvc", "b.vc")
.Case("bhi", "b.hi")
.Case("bls", "b.ls")
.Case("bge", "b.ge")
.Case("blt", "b.lt")
.Case("bgt", "b.gt")
.Case("ble", "b.le")
.Case("bal", "b.al")
.Case("bnv", "b.nv")
.Default(Name);
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
// IC, DC, AT, and TLBI instructions are aliases for the SYS instruction.
if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi")
return parseSysAlias(Head, NameLoc, Operands);
Operands.push_back(
ARM64Operand::CreateToken(Head, false, NameLoc, getContext()));
Mnemonic = Head;
// Handle condition codes for a branch mnemonic
if (Head == "b" && Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start + 1, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()));
unsigned CC = parseCondCodeString(Head);
if (CC == ARM64CC::Invalid)
return Error(SuffixLoc, "invalid condition code");
const MCExpr *CCExpr = MCConstantExpr::Create(CC, getContext());
Operands.push_back(
ARM64Operand::CreateImm(CCExpr, NameLoc, NameLoc, getContext()));
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()) + 1);
Operands.push_back(
ARM64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
}
// Conditional compare instructions have a Condition Code operand, which needs
// to be parsed and an immediate operand created.
bool condCodeFourthOperand =
(Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
Head == "csinc" || Head == "csinv" || Head == "csneg");
// These instructions are aliases to some of the conditional select
// instructions. However, the condition code is inverted in the aliased
// instruction.
//
// FIXME: Is this the correct way to handle these? Or should the parser
// generate the aliased instructions directly?
bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
bool condCodeThirdOperand =
(Head == "cinc" || Head == "cinv" || Head == "cneg");
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, false, false)) {
Parser.eatToEndOfStatement();
return true;
}
unsigned N = 2;
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
(N == 3 && condCodeThirdOperand) ||
(N == 2 && condCodeSecondOperand),
condCodeSecondOperand || condCodeThirdOperand)) {
Parser.eatToEndOfStatement();
return true;
}
++N;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = Parser.getTok().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
// FIXME: This entire function is a giant hack to provide us with decent
// operand range validation/diagnostics until TableGen/MC can be extended
// to support autogeneration of this kind of validation.
bool ARM64AsmParser::validateInstruction(MCInst &Inst,
SmallVectorImpl<SMLoc> &Loc) {
const MCRegisterInfo *RI = getContext().getRegisterInfo();
// Check for indexed addressing modes w/ the base register being the
// same as a destination/source register or pair load where
// the Rt == Rt2. All of those are undefined behaviour.
switch (Inst.getOpcode()) {
case ARM64::LDPSWpre:
case ARM64::LDPWpost:
case ARM64::LDPWpre:
case ARM64::LDPXpost:
case ARM64::LDPXpre: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rt2 = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDP instruction, writeback base "
"is also a destination");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable LDP instruction, writeback base "
"is also a destination");
// FALLTHROUGH
}
case ARM64::LDPDpost:
case ARM64::LDPDpre:
case ARM64::LDPQpost:
case ARM64::LDPQpre:
case ARM64::LDPSpost:
case ARM64::LDPSpre:
case ARM64::LDPSWpost:
case ARM64::LDPDi:
case ARM64::LDPQi:
case ARM64::LDPSi:
case ARM64::LDPSWi:
case ARM64::LDPWi:
case ARM64::LDPXi: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rt2 = Inst.getOperand(1).getReg();
if (Rt == Rt2)
return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
break;
}
case ARM64::STPDpost:
case ARM64::STPDpre:
case ARM64::STPQpost:
case ARM64::STPQpre:
case ARM64::STPSpost:
case ARM64::STPSpre:
case ARM64::STPWpost:
case ARM64::STPWpre:
case ARM64::STPXpost:
case ARM64::STPXpre: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rt2 = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STP instruction, writeback base "
"is also a source");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable STP instruction, writeback base "
"is also a source");
break;
}
case ARM64::LDRBBpre:
case ARM64::LDRBpre:
case ARM64::LDRHHpre:
case ARM64::LDRHpre:
case ARM64::LDRSBWpre:
case ARM64::LDRSBXpre:
case ARM64::LDRSHWpre:
case ARM64::LDRSHXpre:
case ARM64::LDRSWpre:
case ARM64::LDRWpre:
case ARM64::LDRXpre:
case ARM64::LDRBBpost:
case ARM64::LDRBpost:
case ARM64::LDRHHpost:
case ARM64::LDRHpost:
case ARM64::LDRSBWpost:
case ARM64::LDRSBXpost:
case ARM64::LDRSHWpost:
case ARM64::LDRSHXpost:
case ARM64::LDRSWpost:
case ARM64::LDRWpost:
case ARM64::LDRXpost: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rn = Inst.getOperand(1).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDR instruction, writeback base "
"is also a source");
break;
}
case ARM64::STRBBpost:
case ARM64::STRBpost:
case ARM64::STRHHpost:
case ARM64::STRHpost:
case ARM64::STRWpost:
case ARM64::STRXpost:
case ARM64::STRBBpre:
case ARM64::STRBpre:
case ARM64::STRHHpre:
case ARM64::STRHpre:
case ARM64::STRWpre:
case ARM64::STRXpre: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rn = Inst.getOperand(1).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STR instruction, writeback base "
"is also a source");
break;
}
}
// Now check immediate ranges. Separate from the above as there is overlap
// in the instructions being checked and this keeps the nested conditionals
// to a minimum.
switch (Inst.getOpcode()) {
case ARM64::ANDWrs:
case ARM64::ANDSWrs:
case ARM64::EORWrs:
case ARM64::ORRWrs: {
if (!Inst.getOperand(3).isImm())
return Error(Loc[3], "immediate value expected");
int64_t shifter = Inst.getOperand(3).getImm();
ARM64_AM::ShiftType ST = ARM64_AM::getShiftType(shifter);
if (ST == ARM64_AM::LSL && shifter > 31)
return Error(Loc[3], "shift value out of range");
return false;
}
case ARM64::ADDSWri:
case ARM64::ADDSXri:
case ARM64::ADDWri:
case ARM64::ADDXri:
case ARM64::SUBSWri:
case ARM64::SUBSXri:
case ARM64::SUBWri:
case ARM64::SUBXri: {
if (!Inst.getOperand(3).isImm())
return Error(Loc[3], "immediate value expected");
int64_t shifter = Inst.getOperand(3).getImm();
if (shifter != 0 && shifter != 12)
return Error(Loc[3], "shift value out of range");
// The imm12 operand can be an expression. Validate that it's legit.
// FIXME: We really, really want to allow arbitrary expressions here
// and resolve the value and validate the result at fixup time, but
// that's hard as we have long since lost any source information we
// need to generate good diagnostics by that point.
if ((Inst.getOpcode() == ARM64::ADDXri ||
Inst.getOpcode() == ARM64::ADDWri) &&
Inst.getOperand(2).isExpr()) {
const MCExpr *Expr = Inst.getOperand(2).getExpr();
ARM64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
return Error(Loc[2], "invalid immediate expression");
}
// Note that we don't range-check the addend. It's adjusted modulo page
// size when converted, so there is no "out of range" condition when using
// @pageoff. Any validity checking for the value was done in the is*()
// predicate function.
if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
Inst.getOpcode() == ARM64::ADDXri)
return false;
if (ELFRefKind == ARM64MCExpr::VK_LO12 ||
ELFRefKind == ARM64MCExpr::VK_DTPREL_HI12 ||
ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == ARM64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == ARM64MCExpr::VK_TPREL_HI12 ||
ELFRefKind == ARM64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == ARM64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == ARM64MCExpr::VK_TLSDESC_LO12) {
return false;
} else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF) {
// @gotpageoff can only be used directly, not with an addend.
return Addend != 0;
}
// Otherwise, we're not sure, so don't allow it for now.
return Error(Loc[2], "invalid immediate expression");
}
// If it's anything but an immediate, it's not legit.
if (!Inst.getOperand(2).isImm())
return Error(Loc[2], "invalid immediate expression");
int64_t imm = Inst.getOperand(2).getImm();
if (imm > 4095 || imm < 0)
return Error(Loc[2], "immediate value out of range");
return false;
}
case ARM64::LDRBpre:
case ARM64::LDRHpre:
case ARM64::LDRSBWpre:
case ARM64::LDRSBXpre:
case ARM64::LDRSHWpre:
case ARM64::LDRSHXpre:
case ARM64::LDRWpre:
case ARM64::LDRXpre:
case ARM64::LDRSpre:
case ARM64::LDRDpre:
case ARM64::LDRQpre:
case ARM64::STRBpre:
case ARM64::STRHpre:
case ARM64::STRWpre:
case ARM64::STRXpre:
case ARM64::STRSpre:
case ARM64::STRDpre:
case ARM64::STRQpre:
case ARM64::LDRBpost:
case ARM64::LDRHpost:
case ARM64::LDRSBWpost:
case ARM64::LDRSBXpost:
case ARM64::LDRSHWpost:
case ARM64::LDRSHXpost:
case ARM64::LDRWpost:
case ARM64::LDRXpost:
case ARM64::LDRSpost:
case ARM64::LDRDpost:
case ARM64::LDRQpost:
case ARM64::STRBpost:
case ARM64::STRHpost:
case ARM64::STRWpost:
case ARM64::STRXpost:
case ARM64::STRSpost:
case ARM64::STRDpost:
case ARM64::STRQpost:
case ARM64::LDTRXi:
case ARM64::LDTRWi:
case ARM64::LDTRHi:
case ARM64::LDTRBi:
case ARM64::LDTRSHWi:
case ARM64::LDTRSHXi:
case ARM64::LDTRSBWi:
case ARM64::LDTRSBXi:
case ARM64::LDTRSWi:
case ARM64::STTRWi:
case ARM64::STTRXi:
case ARM64::STTRHi:
case ARM64::STTRBi:
case ARM64::LDURWi:
case ARM64::LDURXi:
case ARM64::LDURSi:
case ARM64::LDURDi:
case ARM64::LDURQi:
case ARM64::LDURHi:
case ARM64::LDURBi:
case ARM64::LDURSHWi:
case ARM64::LDURSHXi:
case ARM64::LDURSBWi:
case ARM64::LDURSBXi:
case ARM64::LDURSWi:
case ARM64::PRFUMi:
case ARM64::STURWi:
case ARM64::STURXi:
case ARM64::STURSi:
case ARM64::STURDi:
case ARM64::STURQi:
case ARM64::STURHi:
case ARM64::STURBi: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(2).isImm())
return Error(Loc[1], "immediate value expected");
int64_t offset = Inst.getOperand(2).getImm();
if (offset > 255 || offset < -256)
return Error(Loc[1], "offset value out of range");
return false;
}
case ARM64::LDRSro:
case ARM64::LDRWro:
case ARM64::LDRSWro:
case ARM64::STRWro:
case ARM64::STRSro: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(3).isImm())
return Error(Loc[1], "immediate value expected");
int64_t shift = Inst.getOperand(3).getImm();
ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift);
if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX &&
type != ARM64_AM::SXTW && type != ARM64_AM::SXTX)
return Error(Loc[1], "shift type invalid");
return false;
}
case ARM64::LDRDro:
case ARM64::LDRQro:
case ARM64::LDRXro:
case ARM64::PRFMro:
case ARM64::STRXro:
case ARM64::STRDro:
case ARM64::STRQro: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(3).isImm())
return Error(Loc[1], "immediate value expected");
int64_t shift = Inst.getOperand(3).getImm();
ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift);
if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX &&
type != ARM64_AM::SXTW && type != ARM64_AM::SXTX)
return Error(Loc[1], "shift type invalid");
return false;
}
case ARM64::LDRHro:
case ARM64::LDRHHro:
case ARM64::LDRSHWro:
case ARM64::LDRSHXro:
case ARM64::STRHro:
case ARM64::STRHHro: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(3).isImm())
return Error(Loc[1], "immediate value expected");
int64_t shift = Inst.getOperand(3).getImm();
ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift);
if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX &&
type != ARM64_AM::SXTW && type != ARM64_AM::SXTX)
return Error(Loc[1], "shift type invalid");
return false;
}
case ARM64::LDRBro:
case ARM64::LDRBBro:
case ARM64::LDRSBWro:
case ARM64::LDRSBXro:
case ARM64::STRBro:
case ARM64::STRBBro: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(3).isImm())
return Error(Loc[1], "immediate value expected");
int64_t shift = Inst.getOperand(3).getImm();
ARM64_AM::ExtendType type = ARM64_AM::getMemExtendType(shift);
if (type != ARM64_AM::UXTW && type != ARM64_AM::UXTX &&
type != ARM64_AM::SXTW && type != ARM64_AM::SXTX)
return Error(Loc[1], "shift type invalid");
return false;
}
case ARM64::LDPWi:
case ARM64::LDPXi:
case ARM64::LDPSi:
case ARM64::LDPDi:
case ARM64::LDPQi:
case ARM64::LDPSWi:
case ARM64::STPWi:
case ARM64::STPXi:
case ARM64::STPSi:
case ARM64::STPDi:
case ARM64::STPQi:
case ARM64::LDPWpre:
case ARM64::LDPXpre:
case ARM64::LDPSpre:
case ARM64::LDPDpre:
case ARM64::LDPQpre:
case ARM64::LDPSWpre:
case ARM64::STPWpre:
case ARM64::STPXpre:
case ARM64::STPSpre:
case ARM64::STPDpre:
case ARM64::STPQpre:
case ARM64::LDPWpost:
case ARM64::LDPXpost:
case ARM64::LDPSpost:
case ARM64::LDPDpost:
case ARM64::LDPQpost:
case ARM64::LDPSWpost:
case ARM64::STPWpost:
case ARM64::STPXpost:
case ARM64::STPSpost:
case ARM64::STPDpost:
case ARM64::STPQpost:
case ARM64::LDNPWi:
case ARM64::LDNPXi:
case ARM64::LDNPSi:
case ARM64::LDNPDi:
case ARM64::LDNPQi:
case ARM64::STNPWi:
case ARM64::STNPXi:
case ARM64::STNPSi:
case ARM64::STNPDi:
case ARM64::STNPQi: {
// FIXME: Should accept expressions and error in fixup evaluation
// if out of range.
if (!Inst.getOperand(3).isImm())
return Error(Loc[2], "immediate value expected");
int64_t offset = Inst.getOperand(3).getImm();
if (offset > 63 || offset < -64)
return Error(Loc[2], "offset value out of range");
return false;
}
default:
return false;
}
}
static void rewriteMOVI(ARM64AsmParser::OperandVector &Operands,
StringRef mnemonic, uint64_t imm, unsigned shift,
MCContext &Context) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[0]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
Operands[0] =
ARM64Operand::CreateToken(mnemonic, false, Op->getStartLoc(), Context);
const MCExpr *NewImm = MCConstantExpr::Create(imm >> shift, Context);
Operands[2] = ARM64Operand::CreateImm(NewImm, Op2->getStartLoc(),
Op2->getEndLoc(), Context);
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, shift, Op2->getStartLoc(), Op2->getEndLoc(), Context));
delete Op2;
delete Op;
}
static void rewriteMOVRSP(ARM64AsmParser::OperandVector &Operands,
MCContext &Context) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[0]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
Operands[0] =
ARM64Operand::CreateToken("add", false, Op->getStartLoc(), Context);
const MCExpr *Imm = MCConstantExpr::Create(0, Context);
Operands.push_back(ARM64Operand::CreateImm(Imm, Op2->getStartLoc(),
Op2->getEndLoc(), Context));
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, 0, Op2->getStartLoc(), Op2->getEndLoc(), Context));
delete Op;
}
static void rewriteMOVR(ARM64AsmParser::OperandVector &Operands,
MCContext &Context) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[0]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
Operands[0] =
ARM64Operand::CreateToken("orr", false, Op->getStartLoc(), Context);
// Operands[2] becomes Operands[3].
Operands.push_back(Operands[2]);
// And Operands[2] becomes ZR.
unsigned ZeroReg = ARM64::XZR;
if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(
Operands[2]->getReg()))
ZeroReg = ARM64::WZR;
Operands[2] =
ARM64Operand::CreateReg(ZeroReg, false, Op2->getStartLoc(),
Op2->getEndLoc(), Context);
delete Op;
}
bool ARM64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) {
switch (ErrCode) {
case Match_MissingFeature:
return Error(Loc,
"instruction requires a CPU feature not currently enabled");
case Match_InvalidOperand:
return Error(Loc, "invalid operand for instruction");
case Match_InvalidSuffix:
return Error(Loc, "invalid type suffix for instruction");
case Match_InvalidMemoryIndexedSImm9:
return Error(Loc, "index must be an integer in range [-256, 255].");
case Match_InvalidMemoryIndexed32SImm7:
return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
case Match_InvalidMemoryIndexed64SImm7:
return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
case Match_InvalidMemoryIndexed128SImm7:
return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
case Match_InvalidMemoryIndexed8:
return Error(Loc, "index must be an integer in range [0, 4095].");
case Match_InvalidMemoryIndexed16:
return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
case Match_InvalidMemoryIndexed32:
return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
case Match_InvalidMemoryIndexed64:
return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
case Match_InvalidMemoryIndexed128:
return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
case Match_InvalidImm0_7:
return Error(Loc, "immediate must be an integer in range [0, 7].");
case Match_InvalidImm0_15:
return Error(Loc, "immediate must be an integer in range [0, 15].");
case Match_InvalidImm0_31:
return Error(Loc, "immediate must be an integer in range [0, 31].");
case Match_InvalidImm0_63:
return Error(Loc, "immediate must be an integer in range [0, 63].");
case Match_InvalidImm1_8:
return Error(Loc, "immediate must be an integer in range [1, 8].");
case Match_InvalidImm1_16:
return Error(Loc, "immediate must be an integer in range [1, 16].");
case Match_InvalidImm1_32:
return Error(Loc, "immediate must be an integer in range [1, 32].");
case Match_InvalidImm1_64:
return Error(Loc, "immediate must be an integer in range [1, 64].");
case Match_InvalidIndexB:
return Error(Loc, "vector lane must be an integer in range [0, 15].");
case Match_InvalidIndexH:
return Error(Loc, "vector lane must be an integer in range [0, 7].");
case Match_InvalidIndexS:
return Error(Loc, "vector lane must be an integer in range [0, 3].");
case Match_InvalidIndexD:
return Error(Loc, "vector lane must be an integer in range [0, 1].");
case Match_InvalidLabel:
return Error(Loc, "expected label or encodable integer pc offset");
case Match_MRS:
return Error(Loc, "expected readable system register");
case Match_MSR:
return Error(Loc, "expected writable system register or pstate");
case Match_MnemonicFail:
return Error(Loc, "unrecognized instruction mnemonic");
default:
assert(0 && "unexpected error code!");
return Error(Loc, "invalid instruction format");
}
}
static const char *getSubtargetFeatureName(unsigned Val);
bool ARM64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
unsigned &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[0]);
assert(Op->isToken() && "Leading operand should always be a mnemonic!");
StringRef Tok = Op->getToken();
// Translate CMN/CMP pseudos to ADDS/SUBS with zero register destination.
// This needs to be done before the special handling of ADD/SUB immediates.
if (Tok == "cmp" || Tok == "cmn") {
// Replace the opcode with either ADDS or SUBS.
const char *Repl = StringSwitch<const char *>(Tok)
.Case("cmp", "subs")
.Case("cmn", "adds")
.Default(nullptr);
assert(Repl && "Unknown compare instruction");
delete Operands[0];
Operands[0] = ARM64Operand::CreateToken(Repl, false, IDLoc, getContext());
// Insert WZR or XZR as destination operand.
ARM64Operand *RegOp = static_cast<ARM64Operand *>(Operands[1]);
unsigned ZeroReg;
if (RegOp->isReg() &&
ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(
RegOp->getReg()))
ZeroReg = ARM64::WZR;
else
ZeroReg = ARM64::XZR;
Operands.insert(
Operands.begin() + 1,
ARM64Operand::CreateReg(ZeroReg, false, IDLoc, IDLoc, getContext()));
// Update since we modified it above.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[0]);
Tok = Op->getToken();
}
unsigned NumOperands = Operands.size();
if (Tok == "mov" && NumOperands == 3) {
// The MOV mnemomic is aliased to movn/movz, depending on the value of
// the immediate being instantiated.
// FIXME: Catching this here is a total hack, and we should use tblgen
// support to implement this instead as soon as it is available.
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
if (Op2->isImm()) {
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op2->getImm())) {
uint64_t Val = CE->getValue();
uint64_t NVal = ~Val;
// If this is a 32-bit register and the value has none of the upper
// set, clear the complemented upper 32-bits so the logic below works
// for 32-bit registers too.
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
if (Op1->isReg() &&
ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(
Op1->getReg()) &&
(Val & 0xFFFFFFFFULL) == Val)
NVal &= 0x00000000FFFFFFFFULL;
// MOVK Rd, imm << 0
if ((Val & 0xFFFF) == Val)
rewriteMOVI(Operands, "movz", Val, 0, getContext());
// MOVK Rd, imm << 16
else if ((Val & 0xFFFF0000ULL) == Val)
rewriteMOVI(Operands, "movz", Val, 16, getContext());
// MOVK Rd, imm << 32
else if ((Val & 0xFFFF00000000ULL) == Val)
rewriteMOVI(Operands, "movz", Val, 32, getContext());
// MOVK Rd, imm << 48
else if ((Val & 0xFFFF000000000000ULL) == Val)
rewriteMOVI(Operands, "movz", Val, 48, getContext());
// MOVN Rd, (~imm << 0)
else if ((NVal & 0xFFFFULL) == NVal)
rewriteMOVI(Operands, "movn", NVal, 0, getContext());
// MOVN Rd, ~(imm << 16)
else if ((NVal & 0xFFFF0000ULL) == NVal)
rewriteMOVI(Operands, "movn", NVal, 16, getContext());
// MOVN Rd, ~(imm << 32)
else if ((NVal & 0xFFFF00000000ULL) == NVal)
rewriteMOVI(Operands, "movn", NVal, 32, getContext());
// MOVN Rd, ~(imm << 48)
else if ((NVal & 0xFFFF000000000000ULL) == NVal)
rewriteMOVI(Operands, "movn", NVal, 48, getContext());
}
} else if (Op1->isReg() && Op2->isReg()) {
// reg->reg move.
unsigned Reg1 = Op1->getReg();
unsigned Reg2 = Op2->getReg();
if ((Reg1 == ARM64::SP &&
ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(Reg2)) ||
(Reg2 == ARM64::SP &&
ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(Reg1)) ||
(Reg1 == ARM64::WSP &&
ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg2)) ||
(Reg2 == ARM64::WSP &&
ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(Reg1)))
rewriteMOVRSP(Operands, getContext());
else
rewriteMOVR(Operands, getContext());
}
} else if (NumOperands == 4) {
if (Tok == "add" || Tok == "adds" || Tok == "sub" || Tok == "subs") {
// Handle the uimm24 immediate form, where the shift is not specified.
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
if (Op3->isImm()) {
if (const MCConstantExpr *CE =
dyn_cast<MCConstantExpr>(Op3->getImm())) {
uint64_t Val = CE->getValue();
if (Val >= (1 << 24)) {
Error(IDLoc, "immediate value is too large");
return true;
}
if (Val < (1 << 12)) {
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext()));
} else if ((Val & 0xfff) == 0) {
delete Operands[3];
CE = MCConstantExpr::Create(Val >> 12, getContext());
Operands[3] =
ARM64Operand::CreateImm(CE, IDLoc, IDLoc, getContext());
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, 12, IDLoc, IDLoc, getContext()));
} else {
Error(IDLoc, "immediate value is too large");
return true;
}
} else {
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext()));
}
}
// FIXME: Horible hack to handle the LSL -> UBFM alias.
} else if (NumOperands == 4 && Tok == "lsl") {
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
if (Op2->isReg() && Op3->isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3->getImm());
if (Op3CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t NewOp3Val = 0;
uint64_t NewOp4Val = 0;
if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(
Op2->getReg())) {
NewOp3Val = (32 - Op3Val) & 0x1f;
NewOp4Val = 31 - Op3Val;
} else {
NewOp3Val = (64 - Op3Val) & 0x3f;
NewOp4Val = 63 - Op3Val;
}
const MCExpr *NewOp3 =
MCConstantExpr::Create(NewOp3Val, getContext());
const MCExpr *NewOp4 =
MCConstantExpr::Create(NewOp4Val, getContext());
Operands[0] = ARM64Operand::CreateToken(
"ubfm", false, Op->getStartLoc(), getContext());
Operands[3] = ARM64Operand::CreateImm(NewOp3, Op3->getStartLoc(),
Op3->getEndLoc(), getContext());
Operands.push_back(ARM64Operand::CreateImm(
NewOp4, Op3->getStartLoc(), Op3->getEndLoc(), getContext()));
delete Op3;
delete Op;
}
}
// FIXME: Horrible hack to handle the optional LSL shift for vector
// instructions.
} else if (NumOperands == 4 && (Tok == "bic" || Tok == "orr")) {
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
if ((Op1->isToken() && Op2->isVectorReg() && Op3->isImm()) ||
(Op1->isVectorReg() && Op2->isToken() && Op3->isImm()))
Operands.push_back(ARM64Operand::CreateShifter(ARM64_AM::LSL, 0, IDLoc,
IDLoc, getContext()));
} else if (NumOperands == 4 && (Tok == "movi" || Tok == "mvni")) {
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *Op2 = static_cast<ARM64Operand *>(Operands[2]);
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
if ((Op1->isToken() && Op2->isVectorReg() && Op3->isImm()) ||
(Op1->isVectorReg() && Op2->isToken() && Op3->isImm())) {
StringRef Suffix = Op1->isToken() ? Op1->getToken() : Op2->getToken();
// Canonicalize on lower-case for ease of comparison.
std::string CanonicalSuffix = Suffix.lower();
if (Tok != "movi" ||
(CanonicalSuffix != ".1d" && CanonicalSuffix != ".2d" &&
CanonicalSuffix != ".8b" && CanonicalSuffix != ".16b"))
Operands.push_back(ARM64Operand::CreateShifter(
ARM64_AM::LSL, 0, IDLoc, IDLoc, getContext()));
}
}
} else if (NumOperands == 5) {
// FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
// UBFIZ -> UBFM aliases.
if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
ARM64Operand *Op4 = static_cast<ARM64Operand *>(Operands[4]);
if (Op1->isReg() && Op3->isImm() && Op4->isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3->getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4->getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t NewOp3Val = 0;
if (ARM64MCRegisterClasses[ARM64::GPR32allRegClassID].contains(
Op1->getReg()))
NewOp3Val = (32 - Op3Val) & 0x1f;
else
NewOp3Val = (64 - Op3Val) & 0x3f;
uint64_t NewOp4Val = Op4Val - 1;
const MCExpr *NewOp3 =
MCConstantExpr::Create(NewOp3Val, getContext());
const MCExpr *NewOp4 =
MCConstantExpr::Create(NewOp4Val, getContext());
Operands[3] = ARM64Operand::CreateImm(NewOp3, Op3->getStartLoc(),
Op3->getEndLoc(), getContext());
Operands[4] = ARM64Operand::CreateImm(NewOp4, Op4->getStartLoc(),
Op4->getEndLoc(), getContext());
if (Tok == "bfi")
Operands[0] = ARM64Operand::CreateToken(
"bfm", false, Op->getStartLoc(), getContext());
else if (Tok == "sbfiz")
Operands[0] = ARM64Operand::CreateToken(
"sbfm", false, Op->getStartLoc(), getContext());
else if (Tok == "ubfiz")
Operands[0] = ARM64Operand::CreateToken(
"ubfm", false, Op->getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
delete Op;
delete Op3;
delete Op4;
}
}
// FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
// UBFX -> UBFM aliases.
} else if (NumOperands == 5 &&
(Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
ARM64Operand *Op1 = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *Op3 = static_cast<ARM64Operand *>(Operands[3]);
ARM64Operand *Op4 = static_cast<ARM64Operand *>(Operands[4]);
if (Op1->isReg() && Op3->isImm() && Op4->isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3->getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4->getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t NewOp4Val = Op3Val + Op4Val - 1;
if (NewOp4Val >= Op3Val) {
const MCExpr *NewOp4 =
MCConstantExpr::Create(NewOp4Val, getContext());
Operands[4] = ARM64Operand::CreateImm(
NewOp4, Op4->getStartLoc(), Op4->getEndLoc(), getContext());
if (Tok == "bfxil")
Operands[0] = ARM64Operand::CreateToken(
"bfm", false, Op->getStartLoc(), getContext());
else if (Tok == "sbfx")
Operands[0] = ARM64Operand::CreateToken(
"sbfm", false, Op->getStartLoc(), getContext());
else if (Tok == "ubfx")
Operands[0] = ARM64Operand::CreateToken(
"ubfm", false, Op->getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
delete Op;
delete Op4;
}
}
}
}
}
// FIXME: Horrible hack for tbz and tbnz with Wn register operand.
// InstAlias can't quite handle this since the reg classes aren't
// subclasses.
if (NumOperands == 4 && (Tok == "tbz" || Tok == "tbnz")) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[2]);
if (Op->isImm()) {
if (const MCConstantExpr *OpCE = dyn_cast<MCConstantExpr>(Op->getImm())) {
if (OpCE->getValue() < 32) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[1]);
if (Op->isReg()) {
unsigned Reg = getXRegFromWReg(Op->getReg());
Operands[1] = ARM64Operand::CreateReg(
Reg, false, Op->getStartLoc(), Op->getEndLoc(), getContext());
delete Op;
}
}
}
}
}
// FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
// InstAlias can't quite handle this since the reg classes aren't
// subclasses.
if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[2]);
if (Op->isReg()) {
unsigned Reg = getXRegFromWReg(Op->getReg());
Operands[2] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(),
Op->getEndLoc(), getContext());
delete Op;
}
}
// FIXME: Likewise for sxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[1]);
if (Op->isReg() &&
ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(
Op->getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[2]);
if (Op->isReg()) {
unsigned Reg = getXRegFromWReg(Op->getReg());
Operands[2] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(),
Op->getEndLoc(), getContext());
delete Op;
}
}
}
// FIXME: Likewise for uxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[1]);
if (Op->isReg() &&
ARM64MCRegisterClasses[ARM64::GPR64allRegClassID].contains(
Op->getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR32. Twiddle it here if necessary.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[1]);
if (Op->isReg()) {
unsigned Reg = getWRegFromXReg(Op->getReg());
Operands[1] = ARM64Operand::CreateReg(Reg, false, Op->getStartLoc(),
Op->getEndLoc(), getContext());
delete Op;
}
}
}
// Yet another horrible hack to handle FMOV Rd, #0.0 using [WX]ZR.
if (NumOperands == 3 && Tok == "fmov") {
ARM64Operand *RegOp = static_cast<ARM64Operand *>(Operands[1]);
ARM64Operand *ImmOp = static_cast<ARM64Operand *>(Operands[2]);
if (RegOp->isReg() && ImmOp->isFPImm() &&
ImmOp->getFPImm() == (unsigned)-1) {
unsigned zreg = ARM64MCRegisterClasses[ARM64::FPR32RegClassID].contains(
RegOp->getReg())
? ARM64::WZR
: ARM64::XZR;
Operands[2] = ARM64Operand::CreateReg(zreg, false, Op->getStartLoc(),
Op->getEndLoc(), getContext());
delete ImmOp;
}
}
// FIXME: Horrible hack to handle the literal .d[1] vector index on
// FMOV instructions. The index isn't an actual instruction operand
// but rather syntactic sugar. It really should be part of the mnemonic,
// not the operand, but whatever.
if ((NumOperands == 5) && Tok == "fmov") {
// If the last operand is a vectorindex of '1', then replace it with
// a '[' '1' ']' token sequence, which is what the matcher
// (annoyingly) expects for a literal vector index operand.
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[NumOperands - 1]);
if (Op->isVectorIndexD() && Op->getVectorIndex() == 1) {
SMLoc Loc = Op->getStartLoc();
Operands.pop_back();
delete Op;
Operands.push_back(
ARM64Operand::CreateToken("[", false, Loc, getContext()));
Operands.push_back(
ARM64Operand::CreateToken("1", false, Loc, getContext()));
Operands.push_back(
ARM64Operand::CreateToken("]", false, Loc, getContext()));
} else if (Op->isReg()) {
// Similarly, check the destination operand for the GPR->High-lane
// variant.
unsigned OpNo = NumOperands - 2;
ARM64Operand *Op = static_cast<ARM64Operand *>(Operands[OpNo]);
if (Op->isVectorIndexD() && Op->getVectorIndex() == 1) {
SMLoc Loc = Op->getStartLoc();
Operands[OpNo] =
ARM64Operand::CreateToken("[", false, Loc, getContext());
Operands.insert(
Operands.begin() + OpNo + 1,
ARM64Operand::CreateToken("1", false, Loc, getContext()));
Operands.insert(
Operands.begin() + OpNo + 2,
ARM64Operand::CreateToken("]", false, Loc, getContext()));
delete Op;
}
}
}
MCInst Inst;
// First try to match against the secondary set of tables containing the
// short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1);
// If that fails, try against the alternate table containing long-form NEON:
// "fadd v0.2s, v1.2s, v2.2s"
if (MatchResult != Match_Success)
MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0);
switch (MatchResult) {
case Match_Success: {
// Perform range checking and other semantic validations
SmallVector<SMLoc, 8> OperandLocs;
NumOperands = Operands.size();
for (unsigned i = 1; i < NumOperands; ++i)
OperandLocs.push_back(Operands[i]->getStartLoc());
if (validateInstruction(Inst, OperandLocs))
return true;
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, STI);
return false;
}
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing (neon, e.g.).
std::string Msg = "instruction requires:";
unsigned Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail:
return showMatchError(IDLoc, MatchResult);
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
// If the match failed on a suffix token operand, tweak the diagnostic
// accordingly.
if (((ARM64Operand *)Operands[ErrorInfo])->isToken() &&
((ARM64Operand *)Operands[ErrorInfo])->isTokenSuffix())
MatchResult = Match_InvalidSuffix;
return showMatchError(ErrorLoc, MatchResult);
}
case Match_InvalidMemoryIndexedSImm9: {
// If there is not a '!' after the memory operand that failed, we really
// want the diagnostic for the non-pre-indexed instruction variant instead.
// Be careful to check for the post-indexed variant as well, which also
// uses this match diagnostic. Also exclude the explicitly unscaled
// mnemonics, as they want the unscaled diagnostic as well.
if (Operands.size() == ErrorInfo + 1 &&
!((ARM64Operand *)Operands[ErrorInfo])->isImm() &&
!Tok.startswith("stur") && !Tok.startswith("ldur")) {
// whether we want an Indexed64 or Indexed32 diagnostic depends on
// the register class of the previous operand. Default to 64 in case
// we see something unexpected.
MatchResult = Match_InvalidMemoryIndexed64;
if (ErrorInfo) {
ARM64Operand *PrevOp = (ARM64Operand *)Operands[ErrorInfo - 1];
if (PrevOp->isReg() &&
ARM64MCRegisterClasses[ARM64::GPR32RegClassID].contains(
PrevOp->getReg()))
MatchResult = Match_InvalidMemoryIndexed32;
}
}
SMLoc ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return showMatchError(ErrorLoc, MatchResult);
}
case Match_InvalidMemoryIndexed32:
case Match_InvalidMemoryIndexed64:
case Match_InvalidMemoryIndexed128:
// If there is a '!' after the memory operand that failed, we really
// want the diagnostic for the pre-indexed instruction variant instead.
if (Operands.size() > ErrorInfo + 1 &&
((ARM64Operand *)Operands[ErrorInfo + 1])->isTokenEqual("!"))
MatchResult = Match_InvalidMemoryIndexedSImm9;
// FALL THROUGH
case Match_InvalidMemoryIndexed8:
case Match_InvalidMemoryIndexed16:
case Match_InvalidMemoryIndexed32SImm7:
case Match_InvalidMemoryIndexed64SImm7:
case Match_InvalidMemoryIndexed128SImm7:
case Match_InvalidImm0_7:
case Match_InvalidImm0_15:
case Match_InvalidImm0_31:
case Match_InvalidImm0_63:
case Match_InvalidImm1_8:
case Match_InvalidImm1_16:
case Match_InvalidImm1_32:
case Match_InvalidImm1_64:
case Match_InvalidIndexB:
case Match_InvalidIndexH:
case Match_InvalidIndexS:
case Match_InvalidIndexD:
case Match_InvalidLabel:
case Match_MSR:
case Match_MRS: {
// Any time we get here, there's nothing fancy to do. Just get the
// operand SMLoc and display the diagnostic.
SMLoc ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getStartLoc();
// If it's a memory operand, the error is with the offset immediate,
// so get that location instead.
if (((ARM64Operand *)Operands[ErrorInfo])->isMem())
ErrorLoc = ((ARM64Operand *)Operands[ErrorInfo])->getOffsetLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return showMatchError(ErrorLoc, MatchResult);
}
}
llvm_unreachable("Implement any new match types added!");
return true;
}
/// ParseDirective parses the arm specific directives
bool ARM64AsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
SMLoc Loc = DirectiveID.getLoc();
if (IDVal == ".hword")
return parseDirectiveWord(2, Loc);
if (IDVal == ".word")
return parseDirectiveWord(4, Loc);
if (IDVal == ".xword")
return parseDirectiveWord(8, Loc);
if (IDVal == ".tlsdesccall")
return parseDirectiveTLSDescCall(Loc);
return parseDirectiveLOH(IDVal, Loc);
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARM64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
// parseDirectiveTLSDescCall:
// ::= .tlsdesccall symbol
bool ARM64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return Error(L, "expected symbol after directive");
MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, getContext());
Expr = ARM64MCExpr::Create(Expr, ARM64MCExpr::VK_TLSDESC, getContext());
MCInst Inst;
Inst.setOpcode(ARM64::TLSDESCCALL);
Inst.addOperand(MCOperand::CreateExpr(Expr));
getParser().getStreamer().EmitInstruction(Inst, STI);
return false;
}
/// ::= .loh <lohName | lohId> label1, ..., labelN
/// The number of arguments depends on the loh identifier.
bool ARM64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
if (IDVal != MCLOHDirectiveName())
return true;
MCLOHType Kind;
if (getParser().getTok().isNot(AsmToken::Identifier)) {
if (getParser().getTok().isNot(AsmToken::Integer))
return TokError("expected an identifier or a number in directive");
// We successfully get a numeric value for the identifier.
// Check if it is valid.
int64_t Id = getParser().getTok().getIntVal();
Kind = (MCLOHType)Id;
// Check that Id does not overflow MCLOHType.
if (!isValidMCLOHType(Kind) || Id != Kind)
return TokError("invalid numeric identifier in directive");
} else {
StringRef Name = getTok().getIdentifier();
// We successfully parse an identifier.
// Check if it is a recognized one.
int Id = MCLOHNameToId(Name);
if (Id == -1)
return TokError("invalid identifier in directive");
Kind = (MCLOHType)Id;
}
// Consume the identifier.
Lex();
// Get the number of arguments of this LOH.
int NbArgs = MCLOHIdToNbArgs(Kind);
assert(NbArgs != -1 && "Invalid number of arguments");
SmallVector<MCSymbol *, 3> Args;
for (int Idx = 0; Idx < NbArgs; ++Idx) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return TokError("expected identifier in directive");
Args.push_back(getContext().GetOrCreateSymbol(Name));
if (Idx + 1 == NbArgs)
break;
if (getLexer().isNot(AsmToken::Comma))
return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
Lex();
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
return false;
}
bool
ARM64AsmParser::classifySymbolRef(const MCExpr *Expr,
ARM64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend) {
ELFRefKind = ARM64MCExpr::VK_INVALID;
DarwinRefKind = MCSymbolRefExpr::VK_None;
Addend = 0;
if (const ARM64MCExpr *AE = dyn_cast<ARM64MCExpr>(Expr)) {
ELFRefKind = AE->getKind();
Expr = AE->getSubExpr();
}
const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
if (SE) {
// It's a simple symbol reference with no addend.
DarwinRefKind = SE->getKind();
return true;
}
const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
if (!BE)
return false;
SE = dyn_cast<MCSymbolRefExpr>(BE->getLHS());
if (!SE)
return false;
DarwinRefKind = SE->getKind();
if (BE->getOpcode() != MCBinaryExpr::Add &&
BE->getOpcode() != MCBinaryExpr::Sub)
return false;
// See if the addend is is a constant, otherwise there's more going
// on here than we can deal with.
auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
if (!AddendExpr)
return false;
Addend = AddendExpr->getValue();
if (BE->getOpcode() == MCBinaryExpr::Sub)
Addend = -Addend;
// It's some symbol reference + a constant addend, but really
// shouldn't use both Darwin and ELF syntax.
return ELFRefKind == ARM64MCExpr::VK_INVALID ||
DarwinRefKind == MCSymbolRefExpr::VK_None;
}
/// Force static initialization.
extern "C" void LLVMInitializeARM64AsmParser() {
RegisterMCAsmParser<ARM64AsmParser> X(TheARM64leTarget);
RegisterMCAsmParser<ARM64AsmParser> Y(TheARM64beTarget);
}
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "ARM64GenAsmMatcher.inc"
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned ARM64AsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
unsigned Kind) {
ARM64Operand *Op = static_cast<ARM64Operand *>(AsmOp);
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
int64_t ExpectedVal;
switch (Kind) {
default:
return Match_InvalidOperand;
case MCK__35_0:
ExpectedVal = 0;
break;
case MCK__35_1:
ExpectedVal = 1;
break;
case MCK__35_12:
ExpectedVal = 12;
break;
case MCK__35_16:
ExpectedVal = 16;
break;
case MCK__35_2:
ExpectedVal = 2;
break;
case MCK__35_24:
ExpectedVal = 24;
break;
case MCK__35_3:
ExpectedVal = 3;
break;
case MCK__35_32:
ExpectedVal = 32;
break;
case MCK__35_4:
ExpectedVal = 4;
break;
case MCK__35_48:
ExpectedVal = 48;
break;
case MCK__35_6:
ExpectedVal = 6;
break;
case MCK__35_64:
ExpectedVal = 64;
break;
case MCK__35_8:
ExpectedVal = 8;
break;
}
if (!Op->isImm())
return Match_InvalidOperand;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (!CE)
return Match_InvalidOperand;
if (CE->getValue() == ExpectedVal)
return Match_Success;
return Match_InvalidOperand;
}