llvm-6502/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp
2015-06-05 16:00:11 +00:00

890 lines
32 KiB
C++

//===-- HexagonDisassembler.cpp - Disassembler for Hexagon ISA ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <array>
#include <vector>
using namespace llvm;
using namespace Hexagon;
#define DEBUG_TYPE "hexagon-disassembler"
// Pull DecodeStatus and its enum values into the global namespace.
typedef llvm::MCDisassembler::DecodeStatus DecodeStatus;
namespace {
/// \brief Hexagon disassembler for all Hexagon platforms.
class HexagonDisassembler : public MCDisassembler {
public:
std::unique_ptr<MCInst *> CurrentBundle;
HexagonDisassembler(MCSubtargetInfo const &STI, MCContext &Ctx)
: MCDisassembler(STI, Ctx), CurrentBundle(new MCInst *) {}
DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream, raw_ostream &CStream,
bool &Complete) const;
DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream,
raw_ostream &CStream) const override;
};
}
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
void const *Decoder);
static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
raw_ostream &os);
static void AddSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst);
static const uint16_t IntRegDecoderTable[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
Hexagon::R30, Hexagon::R31};
static const uint16_t PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
Hexagon::P2, Hexagon::P3};
static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
const uint16_t Table[], size_t Size) {
if (RegNo < Size) {
Inst.addOperand(MCOperand::createReg(Table[RegNo]));
return MCDisassembler::Success;
} else
return MCDisassembler::Fail;
}
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
void const *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
unsigned Register = IntRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const uint16_t CtrlRegDecoderTable[] = {
Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
Hexagon::P3_0, Hexagon::NoRegister, Hexagon::C6, Hexagon::C7,
Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPCH};
if (RegNo >= sizeof(CtrlRegDecoderTable) / sizeof(CtrlRegDecoderTable[0]))
return MCDisassembler::Fail;
if (CtrlRegDecoderTable[RegNo] == Hexagon::NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
void const *Decoder) {
static const uint16_t CtrlReg64DecoderTable[] = {
Hexagon::C1_0, Hexagon::NoRegister, Hexagon::C3_2,
Hexagon::NoRegister, Hexagon::NoRegister, Hexagon::NoRegister,
Hexagon::C7_6, Hexagon::NoRegister, Hexagon::C9_8,
Hexagon::NoRegister, Hexagon::C11_10, Hexagon::NoRegister,
Hexagon::CS, Hexagon::NoRegister, Hexagon::UPC,
Hexagon::NoRegister};
if (RegNo >= sizeof(CtrlReg64DecoderTable) / sizeof(CtrlReg64DecoderTable[0]))
return MCDisassembler::Fail;
if (CtrlReg64DecoderTable[RegNo] == Hexagon::NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlReg64DecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
unsigned Register = 0;
switch (RegNo) {
case 0:
Register = Hexagon::M0;
break;
case 1:
Register = Hexagon::M1;
break;
default:
return MCDisassembler::Fail;
}
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const uint16_t DoubleRegDecoderTable[] = {
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
return (DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable,
sizeof(DoubleRegDecoderTable)));
}
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
void const *Decoder) {
if (RegNo > 3)
return MCDisassembler::Fail;
unsigned Register = PredRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
#include "HexagonGenDisassemblerTables.inc"
static MCDisassembler *createHexagonDisassembler(Target const &T,
MCSubtargetInfo const &STI,
MCContext &Ctx) {
return new HexagonDisassembler(STI, Ctx);
}
extern "C" void LLVMInitializeHexagonDisassembler() {
TargetRegistry::RegisterMCDisassembler(TheHexagonTarget,
createHexagonDisassembler);
}
DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
DecodeStatus Result = DecodeStatus::Success;
bool Complete = false;
Size = 0;
*CurrentBundle = &MI;
MI.setOpcode(Hexagon::BUNDLE);
MI.addOperand(MCOperand::createImm(0));
while (Result == Success && Complete == false) {
if (Bytes.size() < HEXAGON_INSTR_SIZE)
return MCDisassembler::Fail;
MCInst *Inst = new (getContext()) MCInst;
Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
MI.addOperand(MCOperand::createInst(Inst));
Size += HEXAGON_INSTR_SIZE;
Bytes = Bytes.slice(HEXAGON_INSTR_SIZE);
}
return Result;
}
DecodeStatus HexagonDisassembler::getSingleInstruction(
MCInst &MI, MCInst &MCB, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &os, raw_ostream &cs, bool &Complete) const {
assert(Bytes.size() >= HEXAGON_INSTR_SIZE);
uint32_t Instruction =
llvm::support::endian::read<uint32_t, llvm::support::little,
llvm::support::unaligned>(Bytes.data());
auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB);
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_LOOP_END) {
if (BundleSize == 0)
HexagonMCInstrInfo::setInnerLoop(MCB);
else if (BundleSize == 1)
HexagonMCInstrInfo::setOuterLoop(MCB);
else
return DecodeStatus::Fail;
}
DecodeStatus Result = DecodeStatus::Success;
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_DUPLEX) {
// Determine the instruction class of each instruction in the duplex.
unsigned duplexIClass, IClassLow, IClassHigh;
duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
switch (duplexIClass) {
default:
return MCDisassembler::Fail;
case 0:
IClassLow = HexagonII::HSIG_L1;
IClassHigh = HexagonII::HSIG_L1;
break;
case 1:
IClassLow = HexagonII::HSIG_L2;
IClassHigh = HexagonII::HSIG_L1;
break;
case 2:
IClassLow = HexagonII::HSIG_L2;
IClassHigh = HexagonII::HSIG_L2;
break;
case 3:
IClassLow = HexagonII::HSIG_A;
IClassHigh = HexagonII::HSIG_A;
break;
case 4:
IClassLow = HexagonII::HSIG_L1;
IClassHigh = HexagonII::HSIG_A;
break;
case 5:
IClassLow = HexagonII::HSIG_L2;
IClassHigh = HexagonII::HSIG_A;
break;
case 6:
IClassLow = HexagonII::HSIG_S1;
IClassHigh = HexagonII::HSIG_A;
break;
case 7:
IClassLow = HexagonII::HSIG_S2;
IClassHigh = HexagonII::HSIG_A;
break;
case 8:
IClassLow = HexagonII::HSIG_S1;
IClassHigh = HexagonII::HSIG_L1;
break;
case 9:
IClassLow = HexagonII::HSIG_S1;
IClassHigh = HexagonII::HSIG_L2;
break;
case 10:
IClassLow = HexagonII::HSIG_S1;
IClassHigh = HexagonII::HSIG_S1;
break;
case 11:
IClassLow = HexagonII::HSIG_S2;
IClassHigh = HexagonII::HSIG_S1;
break;
case 12:
IClassLow = HexagonII::HSIG_S2;
IClassHigh = HexagonII::HSIG_L1;
break;
case 13:
IClassLow = HexagonII::HSIG_S2;
IClassHigh = HexagonII::HSIG_L2;
break;
case 14:
IClassLow = HexagonII::HSIG_S2;
IClassHigh = HexagonII::HSIG_S2;
break;
}
// Set the MCInst to be a duplex instruction. Which one doesn't matter.
MI.setOpcode(Hexagon::DuplexIClass0);
// Decode each instruction in the duplex.
// Create an MCInst for each instruction.
unsigned instLow = Instruction & 0x1fff;
unsigned instHigh = (Instruction >> 16) & 0x1fff;
unsigned opLow;
if (GetSubinstOpcode(IClassLow, instLow, opLow, os) !=
MCDisassembler::Success)
return MCDisassembler::Fail;
unsigned opHigh;
if (GetSubinstOpcode(IClassHigh, instHigh, opHigh, os) !=
MCDisassembler::Success)
return MCDisassembler::Fail;
MCInst *MILow = new (getContext()) MCInst;
MILow->setOpcode(opLow);
MCInst *MIHigh = new (getContext()) MCInst;
MIHigh->setOpcode(opHigh);
AddSubinstOperands(MILow, opLow, instLow);
AddSubinstOperands(MIHigh, opHigh, instHigh);
// see ConvertToSubInst() in
// lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
// Add the duplex instruction MCInsts as operands to the passed in MCInst.
MCOperand OPLow = MCOperand::createInst(MILow);
MCOperand OPHigh = MCOperand::createInst(MIHigh);
MI.addOperand(OPLow);
MI.addOperand(OPHigh);
Complete = true;
} else {
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_PACKET_END)
Complete = true;
// Calling the auto-generated decoder function.
Result =
decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI);
}
return Result;
}
// These values are from HexagonGenMCCodeEmitter.inc and HexagonIsetDx.td
enum subInstBinaryValues {
V4_SA1_addi_BITS = 0x0000,
V4_SA1_addi_MASK = 0x1800,
V4_SA1_addrx_BITS = 0x1800,
V4_SA1_addrx_MASK = 0x1f00,
V4_SA1_addsp_BITS = 0x0c00,
V4_SA1_addsp_MASK = 0x1c00,
V4_SA1_and1_BITS = 0x1200,
V4_SA1_and1_MASK = 0x1f00,
V4_SA1_clrf_BITS = 0x1a70,
V4_SA1_clrf_MASK = 0x1e70,
V4_SA1_clrfnew_BITS = 0x1a50,
V4_SA1_clrfnew_MASK = 0x1e70,
V4_SA1_clrt_BITS = 0x1a60,
V4_SA1_clrt_MASK = 0x1e70,
V4_SA1_clrtnew_BITS = 0x1a40,
V4_SA1_clrtnew_MASK = 0x1e70,
V4_SA1_cmpeqi_BITS = 0x1900,
V4_SA1_cmpeqi_MASK = 0x1f00,
V4_SA1_combine0i_BITS = 0x1c00,
V4_SA1_combine0i_MASK = 0x1d18,
V4_SA1_combine1i_BITS = 0x1c08,
V4_SA1_combine1i_MASK = 0x1d18,
V4_SA1_combine2i_BITS = 0x1c10,
V4_SA1_combine2i_MASK = 0x1d18,
V4_SA1_combine3i_BITS = 0x1c18,
V4_SA1_combine3i_MASK = 0x1d18,
V4_SA1_combinerz_BITS = 0x1d08,
V4_SA1_combinerz_MASK = 0x1d08,
V4_SA1_combinezr_BITS = 0x1d00,
V4_SA1_combinezr_MASK = 0x1d08,
V4_SA1_dec_BITS = 0x1300,
V4_SA1_dec_MASK = 0x1f00,
V4_SA1_inc_BITS = 0x1100,
V4_SA1_inc_MASK = 0x1f00,
V4_SA1_seti_BITS = 0x0800,
V4_SA1_seti_MASK = 0x1c00,
V4_SA1_setin1_BITS = 0x1a00,
V4_SA1_setin1_MASK = 0x1e40,
V4_SA1_sxtb_BITS = 0x1500,
V4_SA1_sxtb_MASK = 0x1f00,
V4_SA1_sxth_BITS = 0x1400,
V4_SA1_sxth_MASK = 0x1f00,
V4_SA1_tfr_BITS = 0x1000,
V4_SA1_tfr_MASK = 0x1f00,
V4_SA1_zxtb_BITS = 0x1700,
V4_SA1_zxtb_MASK = 0x1f00,
V4_SA1_zxth_BITS = 0x1600,
V4_SA1_zxth_MASK = 0x1f00,
V4_SL1_loadri_io_BITS = 0x0000,
V4_SL1_loadri_io_MASK = 0x1000,
V4_SL1_loadrub_io_BITS = 0x1000,
V4_SL1_loadrub_io_MASK = 0x1000,
V4_SL2_deallocframe_BITS = 0x1f00,
V4_SL2_deallocframe_MASK = 0x1fc0,
V4_SL2_jumpr31_BITS = 0x1fc0,
V4_SL2_jumpr31_MASK = 0x1fc4,
V4_SL2_jumpr31_f_BITS = 0x1fc5,
V4_SL2_jumpr31_f_MASK = 0x1fc7,
V4_SL2_jumpr31_fnew_BITS = 0x1fc7,
V4_SL2_jumpr31_fnew_MASK = 0x1fc7,
V4_SL2_jumpr31_t_BITS = 0x1fc4,
V4_SL2_jumpr31_t_MASK = 0x1fc7,
V4_SL2_jumpr31_tnew_BITS = 0x1fc6,
V4_SL2_jumpr31_tnew_MASK = 0x1fc7,
V4_SL2_loadrb_io_BITS = 0x1000,
V4_SL2_loadrb_io_MASK = 0x1800,
V4_SL2_loadrd_sp_BITS = 0x1e00,
V4_SL2_loadrd_sp_MASK = 0x1f00,
V4_SL2_loadrh_io_BITS = 0x0000,
V4_SL2_loadrh_io_MASK = 0x1800,
V4_SL2_loadri_sp_BITS = 0x1c00,
V4_SL2_loadri_sp_MASK = 0x1e00,
V4_SL2_loadruh_io_BITS = 0x0800,
V4_SL2_loadruh_io_MASK = 0x1800,
V4_SL2_return_BITS = 0x1f40,
V4_SL2_return_MASK = 0x1fc4,
V4_SL2_return_f_BITS = 0x1f45,
V4_SL2_return_f_MASK = 0x1fc7,
V4_SL2_return_fnew_BITS = 0x1f47,
V4_SL2_return_fnew_MASK = 0x1fc7,
V4_SL2_return_t_BITS = 0x1f44,
V4_SL2_return_t_MASK = 0x1fc7,
V4_SL2_return_tnew_BITS = 0x1f46,
V4_SL2_return_tnew_MASK = 0x1fc7,
V4_SS1_storeb_io_BITS = 0x1000,
V4_SS1_storeb_io_MASK = 0x1000,
V4_SS1_storew_io_BITS = 0x0000,
V4_SS1_storew_io_MASK = 0x1000,
V4_SS2_allocframe_BITS = 0x1c00,
V4_SS2_allocframe_MASK = 0x1e00,
V4_SS2_storebi0_BITS = 0x1200,
V4_SS2_storebi0_MASK = 0x1f00,
V4_SS2_storebi1_BITS = 0x1300,
V4_SS2_storebi1_MASK = 0x1f00,
V4_SS2_stored_sp_BITS = 0x0a00,
V4_SS2_stored_sp_MASK = 0x1e00,
V4_SS2_storeh_io_BITS = 0x0000,
V4_SS2_storeh_io_MASK = 0x1800,
V4_SS2_storew_sp_BITS = 0x0800,
V4_SS2_storew_sp_MASK = 0x1e00,
V4_SS2_storewi0_BITS = 0x1000,
V4_SS2_storewi0_MASK = 0x1f00,
V4_SS2_storewi1_BITS = 0x1100,
V4_SS2_storewi1_MASK = 0x1f00
};
static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
raw_ostream &os) {
switch (IClass) {
case HexagonII::HSIG_L1:
if ((inst & V4_SL1_loadri_io_MASK) == V4_SL1_loadri_io_BITS)
op = Hexagon::V4_SL1_loadri_io;
else if ((inst & V4_SL1_loadrub_io_MASK) == V4_SL1_loadrub_io_BITS)
op = Hexagon::V4_SL1_loadrub_io;
else {
os << "<unknown subinstruction>";
return MCDisassembler::Fail;
}
break;
case HexagonII::HSIG_L2:
if ((inst & V4_SL2_deallocframe_MASK) == V4_SL2_deallocframe_BITS)
op = Hexagon::V4_SL2_deallocframe;
else if ((inst & V4_SL2_jumpr31_MASK) == V4_SL2_jumpr31_BITS)
op = Hexagon::V4_SL2_jumpr31;
else if ((inst & V4_SL2_jumpr31_f_MASK) == V4_SL2_jumpr31_f_BITS)
op = Hexagon::V4_SL2_jumpr31_f;
else if ((inst & V4_SL2_jumpr31_fnew_MASK) == V4_SL2_jumpr31_fnew_BITS)
op = Hexagon::V4_SL2_jumpr31_fnew;
else if ((inst & V4_SL2_jumpr31_t_MASK) == V4_SL2_jumpr31_t_BITS)
op = Hexagon::V4_SL2_jumpr31_t;
else if ((inst & V4_SL2_jumpr31_tnew_MASK) == V4_SL2_jumpr31_tnew_BITS)
op = Hexagon::V4_SL2_jumpr31_tnew;
else if ((inst & V4_SL2_loadrb_io_MASK) == V4_SL2_loadrb_io_BITS)
op = Hexagon::V4_SL2_loadrb_io;
else if ((inst & V4_SL2_loadrd_sp_MASK) == V4_SL2_loadrd_sp_BITS)
op = Hexagon::V4_SL2_loadrd_sp;
else if ((inst & V4_SL2_loadrh_io_MASK) == V4_SL2_loadrh_io_BITS)
op = Hexagon::V4_SL2_loadrh_io;
else if ((inst & V4_SL2_loadri_sp_MASK) == V4_SL2_loadri_sp_BITS)
op = Hexagon::V4_SL2_loadri_sp;
else if ((inst & V4_SL2_loadruh_io_MASK) == V4_SL2_loadruh_io_BITS)
op = Hexagon::V4_SL2_loadruh_io;
else if ((inst & V4_SL2_return_MASK) == V4_SL2_return_BITS)
op = Hexagon::V4_SL2_return;
else if ((inst & V4_SL2_return_f_MASK) == V4_SL2_return_f_BITS)
op = Hexagon::V4_SL2_return_f;
else if ((inst & V4_SL2_return_fnew_MASK) == V4_SL2_return_fnew_BITS)
op = Hexagon::V4_SL2_return_fnew;
else if ((inst & V4_SL2_return_t_MASK) == V4_SL2_return_t_BITS)
op = Hexagon::V4_SL2_return_t;
else if ((inst & V4_SL2_return_tnew_MASK) == V4_SL2_return_tnew_BITS)
op = Hexagon::V4_SL2_return_tnew;
else {
os << "<unknown subinstruction>";
return MCDisassembler::Fail;
}
break;
case HexagonII::HSIG_A:
if ((inst & V4_SA1_addi_MASK) == V4_SA1_addi_BITS)
op = Hexagon::V4_SA1_addi;
else if ((inst & V4_SA1_addrx_MASK) == V4_SA1_addrx_BITS)
op = Hexagon::V4_SA1_addrx;
else if ((inst & V4_SA1_addsp_MASK) == V4_SA1_addsp_BITS)
op = Hexagon::V4_SA1_addsp;
else if ((inst & V4_SA1_and1_MASK) == V4_SA1_and1_BITS)
op = Hexagon::V4_SA1_and1;
else if ((inst & V4_SA1_clrf_MASK) == V4_SA1_clrf_BITS)
op = Hexagon::V4_SA1_clrf;
else if ((inst & V4_SA1_clrfnew_MASK) == V4_SA1_clrfnew_BITS)
op = Hexagon::V4_SA1_clrfnew;
else if ((inst & V4_SA1_clrt_MASK) == V4_SA1_clrt_BITS)
op = Hexagon::V4_SA1_clrt;
else if ((inst & V4_SA1_clrtnew_MASK) == V4_SA1_clrtnew_BITS)
op = Hexagon::V4_SA1_clrtnew;
else if ((inst & V4_SA1_cmpeqi_MASK) == V4_SA1_cmpeqi_BITS)
op = Hexagon::V4_SA1_cmpeqi;
else if ((inst & V4_SA1_combine0i_MASK) == V4_SA1_combine0i_BITS)
op = Hexagon::V4_SA1_combine0i;
else if ((inst & V4_SA1_combine1i_MASK) == V4_SA1_combine1i_BITS)
op = Hexagon::V4_SA1_combine1i;
else if ((inst & V4_SA1_combine2i_MASK) == V4_SA1_combine2i_BITS)
op = Hexagon::V4_SA1_combine2i;
else if ((inst & V4_SA1_combine3i_MASK) == V4_SA1_combine3i_BITS)
op = Hexagon::V4_SA1_combine3i;
else if ((inst & V4_SA1_combinerz_MASK) == V4_SA1_combinerz_BITS)
op = Hexagon::V4_SA1_combinerz;
else if ((inst & V4_SA1_combinezr_MASK) == V4_SA1_combinezr_BITS)
op = Hexagon::V4_SA1_combinezr;
else if ((inst & V4_SA1_dec_MASK) == V4_SA1_dec_BITS)
op = Hexagon::V4_SA1_dec;
else if ((inst & V4_SA1_inc_MASK) == V4_SA1_inc_BITS)
op = Hexagon::V4_SA1_inc;
else if ((inst & V4_SA1_seti_MASK) == V4_SA1_seti_BITS)
op = Hexagon::V4_SA1_seti;
else if ((inst & V4_SA1_setin1_MASK) == V4_SA1_setin1_BITS)
op = Hexagon::V4_SA1_setin1;
else if ((inst & V4_SA1_sxtb_MASK) == V4_SA1_sxtb_BITS)
op = Hexagon::V4_SA1_sxtb;
else if ((inst & V4_SA1_sxth_MASK) == V4_SA1_sxth_BITS)
op = Hexagon::V4_SA1_sxth;
else if ((inst & V4_SA1_tfr_MASK) == V4_SA1_tfr_BITS)
op = Hexagon::V4_SA1_tfr;
else if ((inst & V4_SA1_zxtb_MASK) == V4_SA1_zxtb_BITS)
op = Hexagon::V4_SA1_zxtb;
else if ((inst & V4_SA1_zxth_MASK) == V4_SA1_zxth_BITS)
op = Hexagon::V4_SA1_zxth;
else {
os << "<unknown subinstruction>";
return MCDisassembler::Fail;
}
break;
case HexagonII::HSIG_S1:
if ((inst & V4_SS1_storeb_io_MASK) == V4_SS1_storeb_io_BITS)
op = Hexagon::V4_SS1_storeb_io;
else if ((inst & V4_SS1_storew_io_MASK) == V4_SS1_storew_io_BITS)
op = Hexagon::V4_SS1_storew_io;
else {
os << "<unknown subinstruction>";
return MCDisassembler::Fail;
}
break;
case HexagonII::HSIG_S2:
if ((inst & V4_SS2_allocframe_MASK) == V4_SS2_allocframe_BITS)
op = Hexagon::V4_SS2_allocframe;
else if ((inst & V4_SS2_storebi0_MASK) == V4_SS2_storebi0_BITS)
op = Hexagon::V4_SS2_storebi0;
else if ((inst & V4_SS2_storebi1_MASK) == V4_SS2_storebi1_BITS)
op = Hexagon::V4_SS2_storebi1;
else if ((inst & V4_SS2_stored_sp_MASK) == V4_SS2_stored_sp_BITS)
op = Hexagon::V4_SS2_stored_sp;
else if ((inst & V4_SS2_storeh_io_MASK) == V4_SS2_storeh_io_BITS)
op = Hexagon::V4_SS2_storeh_io;
else if ((inst & V4_SS2_storew_sp_MASK) == V4_SS2_storew_sp_BITS)
op = Hexagon::V4_SS2_storew_sp;
else if ((inst & V4_SS2_storewi0_MASK) == V4_SS2_storewi0_BITS)
op = Hexagon::V4_SS2_storewi0;
else if ((inst & V4_SS2_storewi1_MASK) == V4_SS2_storewi1_BITS)
op = Hexagon::V4_SS2_storewi1;
else {
os << "<unknown subinstruction>";
return MCDisassembler::Fail;
}
break;
default:
os << "<unknown>";
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
}
static unsigned getRegFromSubinstEncoding(unsigned encoded_reg) {
if (encoded_reg < 8)
return Hexagon::R0 + encoded_reg;
else if (encoded_reg < 16)
return Hexagon::R0 + encoded_reg + 8;
return Hexagon::NoRegister;
}
static unsigned getDRegFromSubinstEncoding(unsigned encoded_dreg) {
if (encoded_dreg < 4)
return Hexagon::D0 + encoded_dreg;
else if (encoded_dreg < 8)
return Hexagon::D0 + encoded_dreg + 4;
return Hexagon::NoRegister;
}
static void AddSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst) {
int64_t operand;
MCOperand Op;
switch (opcode) {
case Hexagon::V4_SL2_deallocframe:
case Hexagon::V4_SL2_jumpr31:
case Hexagon::V4_SL2_jumpr31_f:
case Hexagon::V4_SL2_jumpr31_fnew:
case Hexagon::V4_SL2_jumpr31_t:
case Hexagon::V4_SL2_jumpr31_tnew:
case Hexagon::V4_SL2_return:
case Hexagon::V4_SL2_return_f:
case Hexagon::V4_SL2_return_fnew:
case Hexagon::V4_SL2_return_t:
case Hexagon::V4_SL2_return_tnew:
// no operands for these instructions
break;
case Hexagon::V4_SS2_allocframe:
// u 8-4{5_3}
operand = ((inst & 0x1f0) >> 4) << 3;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL1_loadri_io:
// Rd 3-0, Rs 7-4, u 11-8{4_2}
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0xf00) >> 6;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL1_loadrub_io:
// Rd 3-0, Rs 7-4, u 11-8
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0xf00) >> 8;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL2_loadrb_io:
// Rd 3-0, Rs 7-4, u 10-8
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0x700) >> 8;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL2_loadrh_io:
case Hexagon::V4_SL2_loadruh_io:
// Rd 3-0, Rs 7-4, u 10-8{3_1}
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0x700) >> 8) << 1;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL2_loadrd_sp:
// Rdd 2-0, u 7-3{5_3}
operand = getDRegFromSubinstEncoding(inst & 0x7);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0x0f8) >> 3) << 3;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SL2_loadri_sp:
// Rd 3-0, u 8-4{5_2}
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0x1f0) >> 4) << 2;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_addi:
// Rx 3-0 (x2), s7 10-4
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
MI->addOperand(Op);
operand = SignExtend64<7>((inst & 0x7f0) >> 4);
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_addrx:
// Rx 3-0 (x2), Rs 7-4
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
case Hexagon::V4_SA1_and1:
case Hexagon::V4_SA1_dec:
case Hexagon::V4_SA1_inc:
case Hexagon::V4_SA1_sxtb:
case Hexagon::V4_SA1_sxth:
case Hexagon::V4_SA1_tfr:
case Hexagon::V4_SA1_zxtb:
case Hexagon::V4_SA1_zxth:
// Rd 3-0, Rs 7-4
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_addsp:
// Rd 3-0, u 9-4{6_2}
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0x3f0) >> 4) << 2;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_seti:
// Rd 3-0, u 9-4
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0x3f0) >> 4;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_clrf:
case Hexagon::V4_SA1_clrfnew:
case Hexagon::V4_SA1_clrt:
case Hexagon::V4_SA1_clrtnew:
case Hexagon::V4_SA1_setin1:
// Rd 3-0
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_cmpeqi:
// Rs 7-4, u 1-0
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = inst & 0x3;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_combine0i:
case Hexagon::V4_SA1_combine1i:
case Hexagon::V4_SA1_combine2i:
case Hexagon::V4_SA1_combine3i:
// Rdd 2-0, u 6-5
operand = getDRegFromSubinstEncoding(inst & 0x7);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0x060) >> 5;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SA1_combinerz:
case Hexagon::V4_SA1_combinezr:
// Rdd 2-0, Rs 7-4
operand = getDRegFromSubinstEncoding(inst & 0x7);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS1_storeb_io:
// Rs 7-4, u 11-8, Rt 3-0
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0xf00) >> 8;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS1_storew_io:
// Rs 7-4, u 11-8{4_2}, Rt 3-0
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0xf00) >> 8) << 2;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS2_storebi0:
case Hexagon::V4_SS2_storebi1:
// Rs 7-4, u 3-0
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = inst & 0xf;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS2_storewi0:
case Hexagon::V4_SS2_storewi1:
// Rs 7-4, u 3-0{4_2}
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = (inst & 0xf) << 2;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS2_stored_sp:
// s 8-3{6_3}, Rtt 2-0
operand = SignExtend64<9>(((inst & 0x1f8) >> 3) << 3);
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
operand = getDRegFromSubinstEncoding(inst & 0x7);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
case Hexagon::V4_SS2_storeh_io:
// Rs 7-4, u 10-8{3_1}, Rt 3-0
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
operand = ((inst & 0x700) >> 8) << 1;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
case Hexagon::V4_SS2_storew_sp:
// u 8-4{5_2}, Rd 3-0
operand = ((inst & 0x1f0) >> 4) << 2;
Op = MCOperand::createImm(operand);
MI->addOperand(Op);
operand = getRegFromSubinstEncoding(inst & 0xf);
Op = MCOperand::createReg(operand);
MI->addOperand(Op);
break;
default:
// don't crash with an invalid subinstruction
// llvm_unreachable("Invalid subinstruction in duplex instruction");
break;
}
}