mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
3a880de6e6
Removed vzeroupper from AVX-512 mode - our optimization gude does not recommend to insert vzeroupper at all. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198557 91177308-0d34-0410-b5e6-96231b3b80d8
318 lines
10 KiB
C++
318 lines
10 KiB
C++
//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass which inserts x86 AVX vzeroupper instructions
|
|
// before calls to SSE encoded functions. This avoids transition latency
|
|
// penalty when tranfering control between AVX encoded instructions and old
|
|
// SSE encoding mode.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-vzeroupper"
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
|
|
|
|
namespace {
|
|
struct VZeroUpperInserter : public MachineFunctionPass {
|
|
static char ID;
|
|
VZeroUpperInserter() : MachineFunctionPass(ID) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
|
|
virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
|
|
|
|
private:
|
|
const TargetInstrInfo *TII; // Machine instruction info.
|
|
|
|
// Any YMM register live-in to this function?
|
|
bool FnHasLiveInYmm;
|
|
|
|
// BBState - Contains the state of each MBB: unknown, clean, dirty
|
|
SmallVector<uint8_t, 8> BBState;
|
|
|
|
// BBSolved - Keep track of all MBB which had been already analyzed
|
|
// and there is no further processing required.
|
|
BitVector BBSolved;
|
|
|
|
// Machine Basic Blocks are classified according this pass:
|
|
//
|
|
// ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
|
|
// until the MBB exit there isn't a instruction using YMM to change
|
|
// the state to dirty, or one of the incoming predecessors is unknown
|
|
// and there's not a dirty predecessor between them.
|
|
//
|
|
// ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
|
|
// instructions using YMM and be marked ST_CLEAN, as long as the state
|
|
// is cleaned by a vzeroupper before any call.
|
|
//
|
|
// ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
|
|
// vzeroupper instruction.
|
|
//
|
|
// ST_INIT - Placeholder for an empty state set
|
|
//
|
|
enum {
|
|
ST_UNKNOWN = 0,
|
|
ST_CLEAN = 1,
|
|
ST_DIRTY = 2,
|
|
ST_INIT = 3
|
|
};
|
|
|
|
// computeState - Given two states, compute the resulting state, in
|
|
// the following way
|
|
//
|
|
// 1) One dirty state yields another dirty state
|
|
// 2) All states must be clean for the result to be clean
|
|
// 3) If none above and one unknown, the result state is also unknown
|
|
//
|
|
static unsigned computeState(unsigned PrevState, unsigned CurState) {
|
|
if (PrevState == ST_INIT)
|
|
return CurState;
|
|
|
|
if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
|
|
return ST_DIRTY;
|
|
|
|
if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
|
|
return ST_CLEAN;
|
|
|
|
return ST_UNKNOWN;
|
|
}
|
|
|
|
};
|
|
char VZeroUpperInserter::ID = 0;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
|
|
return new VZeroUpperInserter();
|
|
}
|
|
|
|
static bool isYmmReg(unsigned Reg) {
|
|
return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
|
|
}
|
|
|
|
static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
|
|
for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
|
|
E = MRI.livein_end(); I != E; ++I)
|
|
if (isYmmReg(I->first))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool clobbersAllYmmRegs(const MachineOperand &MO) {
|
|
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
|
if (!MO.clobbersPhysReg(reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hasYmmReg(MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
|
|
return true;
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDebug())
|
|
continue;
|
|
if (isYmmReg(MO.getReg()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
|
|
/// instruction.
|
|
static bool clobbersAnyYmmReg(MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isRegMask())
|
|
continue;
|
|
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
|
if (MO.clobbersPhysReg(reg))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
|
|
/// vzero upper instructions before function calls.
|
|
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
|
if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
|
|
return false;
|
|
TII = MF.getTarget().getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool EverMadeChange = false;
|
|
|
|
// Fast check: if the function doesn't use any ymm registers, we don't need
|
|
// to insert any VZEROUPPER instructions. This is constant-time, so it is
|
|
// cheap in the common case of no ymm use.
|
|
bool YMMUsed = false;
|
|
const TargetRegisterClass *RC = &X86::VR256RegClass;
|
|
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
|
|
i != e; i++) {
|
|
if (!MRI.reg_nodbg_empty(*i)) {
|
|
YMMUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!YMMUsed)
|
|
return EverMadeChange;
|
|
|
|
// Pre-compute the existence of any live-in YMM registers to this function
|
|
FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
|
|
|
|
assert(BBState.empty());
|
|
BBState.resize(MF.getNumBlockIDs(), 0);
|
|
BBSolved.resize(MF.getNumBlockIDs(), 0);
|
|
|
|
// Each BB state depends on all predecessors, loop over until everything
|
|
// converges. (Once we converge, we can implicitly mark everything that is
|
|
// still ST_UNKNOWN as ST_CLEAN.)
|
|
while (1) {
|
|
bool MadeChange = false;
|
|
|
|
// Process all basic blocks.
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
MadeChange |= processBasicBlock(MF, *I);
|
|
|
|
// If this iteration over the code changed anything, keep iterating.
|
|
if (!MadeChange) break;
|
|
EverMadeChange = true;
|
|
}
|
|
|
|
BBState.clear();
|
|
BBSolved.clear();
|
|
return EverMadeChange;
|
|
}
|
|
|
|
/// processBasicBlock - Loop over all of the instructions in the basic block,
|
|
/// inserting vzero upper instructions before function calls.
|
|
bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
|
|
MachineBasicBlock &BB) {
|
|
bool Changed = false;
|
|
unsigned BBNum = BB.getNumber();
|
|
|
|
// Don't process already solved BBs
|
|
if (BBSolved[BBNum])
|
|
return false; // No changes
|
|
|
|
// Check the state of all predecessors
|
|
unsigned EntryState = ST_INIT;
|
|
for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
|
|
PE = BB.pred_end(); PI != PE; ++PI) {
|
|
EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
|
|
if (EntryState == ST_DIRTY)
|
|
break;
|
|
}
|
|
|
|
|
|
// The entry MBB for the function may set the initial state to dirty if
|
|
// the function receives any YMM incoming arguments
|
|
if (&BB == MF.begin()) {
|
|
EntryState = ST_CLEAN;
|
|
if (FnHasLiveInYmm)
|
|
EntryState = ST_DIRTY;
|
|
}
|
|
|
|
// The current state is initialized according to the predecessors
|
|
unsigned CurState = EntryState;
|
|
bool BBHasCall = false;
|
|
|
|
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
|
|
DebugLoc dl = I->getDebugLoc();
|
|
MachineInstr *MI = I;
|
|
|
|
bool isControlFlow = MI->isCall() || MI->isReturn();
|
|
|
|
// Shortcut: don't need to check regular instructions in dirty state.
|
|
if (!isControlFlow && CurState == ST_DIRTY)
|
|
continue;
|
|
|
|
if (hasYmmReg(MI)) {
|
|
// We found a ymm-using instruction; this could be an AVX instruction,
|
|
// or it could be control flow.
|
|
CurState = ST_DIRTY;
|
|
continue;
|
|
}
|
|
|
|
// Check for control-flow out of the current function (which might
|
|
// indirectly execute SSE instructions).
|
|
if (!isControlFlow)
|
|
continue;
|
|
|
|
// If the call won't clobber any YMM register, skip it as well. It usually
|
|
// happens on helper function calls (such as '_chkstk', '_ftol2') where
|
|
// standard calling convention is not used (RegMask is not used to mark
|
|
// register clobbered and register usage (def/imp-def/use) is well-dfined
|
|
// and explicitly specified.
|
|
if (MI->isCall() && !clobbersAnyYmmReg(MI))
|
|
continue;
|
|
|
|
BBHasCall = true;
|
|
|
|
// The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
|
|
// registers. This instruction has zero latency. In addition, the processor
|
|
// changes back to Clean state, after which execution of Intel SSE
|
|
// instructions or Intel AVX instructions has no transition penalty. Add
|
|
// the VZEROUPPER instruction before any function call/return that might
|
|
// execute SSE code.
|
|
// FIXME: In some cases, we may want to move the VZEROUPPER into a
|
|
// predecessor block.
|
|
if (CurState == ST_DIRTY) {
|
|
// Only insert the VZEROUPPER in case the entry state isn't unknown.
|
|
// When unknown, only compute the information within the block to have
|
|
// it available in the exit if possible, but don't change the block.
|
|
if (EntryState != ST_UNKNOWN) {
|
|
BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
|
|
++NumVZU;
|
|
}
|
|
|
|
// After the inserted VZEROUPPER the state becomes clean again, but
|
|
// other YMM may appear before other subsequent calls or even before
|
|
// the end of the BB.
|
|
CurState = ST_CLEAN;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "MBB #" << BBNum
|
|
<< ", current state: " << CurState << '\n');
|
|
|
|
// A BB can only be considered solved when we both have done all the
|
|
// necessary transformations, and have computed the exit state. This happens
|
|
// in two cases:
|
|
// 1) We know the entry state: this immediately implies the exit state and
|
|
// all the necessary transformations.
|
|
// 2) There are no calls, and and a non-call instruction marks this block:
|
|
// no transformations are necessary, and we know the exit state.
|
|
if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
|
|
BBSolved[BBNum] = true;
|
|
|
|
if (CurState != BBState[BBNum])
|
|
Changed = true;
|
|
|
|
BBState[BBNum] = CurState;
|
|
return Changed;
|
|
}
|