mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
37886438dd
than once, and the second time through we leaked memory. Found thanks to the vg-leak bot, but I can't locally reproduce it with valgrind. The debugger confirms that it is in fact leaking here. This whole code is totally gross. Why is initialize being called on each runOnFunction??? Why aren't these OwningPtr<>s, and why aren't their lifetimes better defined? Anyways, this is just a surgical change to help out the leak checking bots. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187299 91177308-0d34-0410-b5e6-96231b3b80d8
694 lines
23 KiB
C++
694 lines
23 KiB
C++
//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// MachineScheduler schedules machine instructions after phi elimination. It
|
|
// preserves LiveIntervals so it can be invoked before register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
#include "HexagonMachineScheduler.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Platform specific modifications to DAG.
|
|
void VLIWMachineScheduler::postprocessDAG() {
|
|
SUnit* LastSequentialCall = NULL;
|
|
// Currently we only catch the situation when compare gets scheduled
|
|
// before preceding call.
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
|
|
// Remember the call.
|
|
if (SUnits[su].getInstr()->isCall())
|
|
LastSequentialCall = &(SUnits[su]);
|
|
// Look for a compare that defines a predicate.
|
|
else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
|
|
SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
|
|
}
|
|
}
|
|
|
|
/// Check if scheduling of this SU is possible
|
|
/// in the current packet.
|
|
/// It is _not_ precise (statefull), it is more like
|
|
/// another heuristic. Many corner cases are figured
|
|
/// empirically.
|
|
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
|
|
if (!SU || !SU->getInstr())
|
|
return false;
|
|
|
|
// First see if the pipeline could receive this instruction
|
|
// in the current cycle.
|
|
switch (SU->getInstr()->getOpcode()) {
|
|
default:
|
|
if (!ResourcesModel->canReserveResources(SU->getInstr()))
|
|
return false;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INLINEASM:
|
|
break;
|
|
}
|
|
|
|
// Now see if there are no other dependencies to instructions already
|
|
// in the packet.
|
|
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
|
|
if (Packet[i]->Succs.size() == 0)
|
|
continue;
|
|
for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
|
|
E = Packet[i]->Succs.end(); I != E; ++I) {
|
|
// Since we do not add pseudos to packets, might as well
|
|
// ignore order dependencies.
|
|
if (I->isCtrl())
|
|
continue;
|
|
|
|
if (I->getSUnit() == SU)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Keep track of available resources.
|
|
bool VLIWResourceModel::reserveResources(SUnit *SU) {
|
|
bool startNewCycle = false;
|
|
// Artificially reset state.
|
|
if (!SU) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
return false;
|
|
}
|
|
// If this SU does not fit in the packet
|
|
// start a new one.
|
|
if (!isResourceAvailable(SU)) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
startNewCycle = true;
|
|
}
|
|
|
|
switch (SU->getInstr()->getOpcode()) {
|
|
default:
|
|
ResourcesModel->reserveResources(SU->getInstr());
|
|
break;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::PROLOG_LABEL:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INLINEASM:
|
|
break;
|
|
}
|
|
Packet.push_back(SU);
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
|
|
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
|
|
DEBUG(dbgs() << "\t[" << i << "] SU(");
|
|
DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
|
|
DEBUG(Packet[i]->getInstr()->dump());
|
|
}
|
|
#endif
|
|
|
|
// If packet is now full, reset the state so in the next cycle
|
|
// we start fresh.
|
|
if (Packet.size() >= SchedModel->getIssueWidth()) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
TotalPackets++;
|
|
startNewCycle = true;
|
|
}
|
|
|
|
return startNewCycle;
|
|
}
|
|
|
|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
|
|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
|
|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
|
|
void VLIWMachineScheduler::schedule() {
|
|
DEBUG(dbgs()
|
|
<< "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
|
|
<< " " << BB->getName()
|
|
<< " in_func " << BB->getParent()->getFunction()->getName()
|
|
<< " at loop depth " << MLI.getLoopDepth(BB)
|
|
<< " \n");
|
|
|
|
buildDAGWithRegPressure();
|
|
|
|
// Postprocess the DAG to add platform specific artificial dependencies.
|
|
postprocessDAG();
|
|
|
|
SmallVector<SUnit*, 8> TopRoots, BotRoots;
|
|
findRootsAndBiasEdges(TopRoots, BotRoots);
|
|
|
|
// Initialize the strategy before modifying the DAG.
|
|
SchedImpl->initialize(this);
|
|
|
|
// To view Height/Depth correctly, they should be accessed at least once.
|
|
//
|
|
// FIXME: SUnit::dumpAll always recompute depth and height now. The max
|
|
// depth/height could be computed directly from the roots and leaves.
|
|
DEBUG(unsigned maxH = 0;
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
if (SUnits[su].getHeight() > maxH)
|
|
maxH = SUnits[su].getHeight();
|
|
dbgs() << "Max Height " << maxH << "\n";);
|
|
DEBUG(unsigned maxD = 0;
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
if (SUnits[su].getDepth() > maxD)
|
|
maxD = SUnits[su].getDepth();
|
|
dbgs() << "Max Depth " << maxD << "\n";);
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
SUnits[su].dumpAll(this));
|
|
|
|
initQueues(TopRoots, BotRoots);
|
|
|
|
bool IsTopNode = false;
|
|
while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
|
|
if (!checkSchedLimit())
|
|
break;
|
|
|
|
scheduleMI(SU, IsTopNode);
|
|
|
|
updateQueues(SU, IsTopNode);
|
|
}
|
|
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
|
|
|
|
placeDebugValues();
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
|
|
DAG = static_cast<VLIWMachineScheduler*>(dag);
|
|
SchedModel = DAG->getSchedModel();
|
|
|
|
Top.init(DAG, SchedModel);
|
|
Bot.init(DAG, SchedModel);
|
|
|
|
// Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
|
|
// are disabled, then these HazardRecs will be disabled.
|
|
const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
|
|
const TargetMachine &TM = DAG->MF.getTarget();
|
|
delete Top.HazardRec;
|
|
delete Bot.HazardRec;
|
|
Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
|
|
Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
|
|
|
|
delete Top.ResourceModel;
|
|
delete Bot.ResourceModel;
|
|
Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
|
|
Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
|
|
|
|
assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
|
|
"-misched-topdown incompatible with -misched-bottomup");
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
|
|
if (SU->isScheduled)
|
|
return;
|
|
|
|
for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
|
|
unsigned MinLatency = I->getLatency();
|
|
#ifndef NDEBUG
|
|
Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
|
|
#endif
|
|
if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
|
|
SU->TopReadyCycle = PredReadyCycle + MinLatency;
|
|
}
|
|
Top.releaseNode(SU, SU->TopReadyCycle);
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
|
|
if (SU->isScheduled)
|
|
return;
|
|
|
|
assert(SU->getInstr() && "Scheduled SUnit must have instr");
|
|
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
|
|
unsigned MinLatency = I->getLatency();
|
|
#ifndef NDEBUG
|
|
Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
|
|
#endif
|
|
if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
|
|
SU->BotReadyCycle = SuccReadyCycle + MinLatency;
|
|
}
|
|
Bot.releaseNode(SU, SU->BotReadyCycle);
|
|
}
|
|
|
|
/// Does this SU have a hazard within the current instruction group.
|
|
///
|
|
/// The scheduler supports two modes of hazard recognition. The first is the
|
|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
|
|
/// supports highly complicated in-order reservation tables
|
|
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
|
|
///
|
|
/// The second is a streamlined mechanism that checks for hazards based on
|
|
/// simple counters that the scheduler itself maintains. It explicitly checks
|
|
/// for instruction dispatch limitations, including the number of micro-ops that
|
|
/// can dispatch per cycle.
|
|
///
|
|
/// TODO: Also check whether the SU must start a new group.
|
|
bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
|
|
if (HazardRec->isEnabled())
|
|
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
|
|
|
|
unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
|
|
if (IssueCount + uops > SchedModel->getIssueWidth())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
|
|
unsigned ReadyCycle) {
|
|
if (ReadyCycle < MinReadyCycle)
|
|
MinReadyCycle = ReadyCycle;
|
|
|
|
// Check for interlocks first. For the purpose of other heuristics, an
|
|
// instruction that cannot issue appears as if it's not in the ReadyQueue.
|
|
if (ReadyCycle > CurrCycle || checkHazard(SU))
|
|
|
|
Pending.push(SU);
|
|
else
|
|
Available.push(SU);
|
|
}
|
|
|
|
/// Move the boundary of scheduled code by one cycle.
|
|
void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
|
|
unsigned Width = SchedModel->getIssueWidth();
|
|
IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
|
|
|
|
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
|
|
unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
|
|
|
|
if (!HazardRec->isEnabled()) {
|
|
// Bypass HazardRec virtual calls.
|
|
CurrCycle = NextCycle;
|
|
} else {
|
|
// Bypass getHazardType calls in case of long latency.
|
|
for (; CurrCycle != NextCycle; ++CurrCycle) {
|
|
if (isTop())
|
|
HazardRec->AdvanceCycle();
|
|
else
|
|
HazardRec->RecedeCycle();
|
|
}
|
|
}
|
|
CheckPending = true;
|
|
|
|
DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
|
|
<< CurrCycle << '\n');
|
|
}
|
|
|
|
/// Move the boundary of scheduled code by one SUnit.
|
|
void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
|
|
bool startNewCycle = false;
|
|
|
|
// Update the reservation table.
|
|
if (HazardRec->isEnabled()) {
|
|
if (!isTop() && SU->isCall) {
|
|
// Calls are scheduled with their preceding instructions. For bottom-up
|
|
// scheduling, clear the pipeline state before emitting.
|
|
HazardRec->Reset();
|
|
}
|
|
HazardRec->EmitInstruction(SU);
|
|
}
|
|
|
|
// Update DFA model.
|
|
startNewCycle = ResourceModel->reserveResources(SU);
|
|
|
|
// Check the instruction group dispatch limit.
|
|
// TODO: Check if this SU must end a dispatch group.
|
|
IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
|
|
if (startNewCycle) {
|
|
DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
|
|
bumpCycle();
|
|
}
|
|
else
|
|
DEBUG(dbgs() << "*** IssueCount " << IssueCount
|
|
<< " at cycle " << CurrCycle << '\n');
|
|
}
|
|
|
|
/// Release pending ready nodes in to the available queue. This makes them
|
|
/// visible to heuristics.
|
|
void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
|
|
// If the available queue is empty, it is safe to reset MinReadyCycle.
|
|
if (Available.empty())
|
|
MinReadyCycle = UINT_MAX;
|
|
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
|
|
SUnit *SU = *(Pending.begin()+i);
|
|
unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
|
|
|
|
if (ReadyCycle < MinReadyCycle)
|
|
MinReadyCycle = ReadyCycle;
|
|
|
|
if (ReadyCycle > CurrCycle)
|
|
continue;
|
|
|
|
if (checkHazard(SU))
|
|
continue;
|
|
|
|
Available.push(SU);
|
|
Pending.remove(Pending.begin()+i);
|
|
--i; --e;
|
|
}
|
|
CheckPending = false;
|
|
}
|
|
|
|
/// Remove SU from the ready set for this boundary.
|
|
void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
|
|
if (Available.isInQueue(SU))
|
|
Available.remove(Available.find(SU));
|
|
else {
|
|
assert(Pending.isInQueue(SU) && "bad ready count");
|
|
Pending.remove(Pending.find(SU));
|
|
}
|
|
}
|
|
|
|
/// If this queue only has one ready candidate, return it. As a side effect,
|
|
/// advance the cycle until at least one node is ready. If multiple instructions
|
|
/// are ready, return NULL.
|
|
SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
|
|
if (CheckPending)
|
|
releasePending();
|
|
|
|
for (unsigned i = 0; Available.empty(); ++i) {
|
|
assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
|
|
"permanent hazard"); (void)i;
|
|
ResourceModel->reserveResources(0);
|
|
bumpCycle();
|
|
releasePending();
|
|
}
|
|
if (Available.size() == 1)
|
|
return *Available.begin();
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
|
|
const ReadyQueue &Q,
|
|
SUnit *SU, PressureElement P) {
|
|
dbgs() << Label << " " << Q.getName() << " ";
|
|
if (P.isValid())
|
|
dbgs() << DAG->TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
|
|
<< " ";
|
|
else
|
|
dbgs() << " ";
|
|
SU->dump(DAG);
|
|
}
|
|
#endif
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit &Pred = *I->getSUnit();
|
|
if (!Pred.isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
|
return 0;
|
|
OnlyAvailablePred = &Pred;
|
|
}
|
|
}
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
|
|
/// of SU, return it, otherwise return null.
|
|
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
|
|
SUnit *OnlyAvailableSucc = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
SUnit &Succ = *I->getSUnit();
|
|
if (!Succ.isScheduled) {
|
|
// We found an available, but not scheduled, successor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
|
|
return 0;
|
|
OnlyAvailableSucc = &Succ;
|
|
}
|
|
}
|
|
return OnlyAvailableSucc;
|
|
}
|
|
|
|
// Constants used to denote relative importance of
|
|
// heuristic components for cost computation.
|
|
static const unsigned PriorityOne = 200;
|
|
static const unsigned PriorityTwo = 100;
|
|
static const unsigned PriorityThree = 50;
|
|
static const unsigned PriorityFour = 20;
|
|
static const unsigned ScaleTwo = 10;
|
|
static const unsigned FactorOne = 2;
|
|
|
|
/// Single point to compute overall scheduling cost.
|
|
/// TODO: More heuristics will be used soon.
|
|
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
|
|
SchedCandidate &Candidate,
|
|
RegPressureDelta &Delta,
|
|
bool verbose) {
|
|
// Initial trivial priority.
|
|
int ResCount = 1;
|
|
|
|
// Do not waste time on a node that is already scheduled.
|
|
if (!SU || SU->isScheduled)
|
|
return ResCount;
|
|
|
|
// Forced priority is high.
|
|
if (SU->isScheduleHigh)
|
|
ResCount += PriorityOne;
|
|
|
|
// Critical path first.
|
|
if (Q.getID() == TopQID) {
|
|
ResCount += (SU->getHeight() * ScaleTwo);
|
|
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (Top.ResourceModel->isResourceAvailable(SU))
|
|
ResCount <<= FactorOne;
|
|
} else {
|
|
ResCount += (SU->getDepth() * ScaleTwo);
|
|
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (Bot.ResourceModel->isResourceAvailable(SU))
|
|
ResCount <<= FactorOne;
|
|
}
|
|
|
|
unsigned NumNodesBlocking = 0;
|
|
if (Q.getID() == TopQID) {
|
|
// How many SUs does it block from scheduling?
|
|
// Look at all of the successors of this node.
|
|
// Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
} else {
|
|
// How many unscheduled predecessors block this node?
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I)
|
|
if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
}
|
|
ResCount += (NumNodesBlocking * ScaleTwo);
|
|
|
|
// Factor in reg pressure as a heuristic.
|
|
ResCount -= (Delta.Excess.UnitIncrease*PriorityThree);
|
|
ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree);
|
|
|
|
DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
|
|
|
|
return ResCount;
|
|
}
|
|
|
|
/// Pick the best candidate from the top queue.
|
|
///
|
|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
|
|
/// DAG building. To adjust for the current scheduling location we need to
|
|
/// maintain the number of vreg uses remaining to be top-scheduled.
|
|
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
|
|
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Candidate) {
|
|
DEBUG(Q.dump());
|
|
|
|
// getMaxPressureDelta temporarily modifies the tracker.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
// BestSU remains NULL if no top candidates beat the best existing candidate.
|
|
CandResult FoundCandidate = NoCand;
|
|
for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
|
|
RegPressureDelta RPDelta;
|
|
TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
|
|
DAG->getRegionCriticalPSets(),
|
|
DAG->getRegPressure().MaxSetPressure);
|
|
|
|
int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
|
|
|
|
// Initialize the candidate if needed.
|
|
if (!Candidate.SU) {
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = NodeOrder;
|
|
continue;
|
|
}
|
|
|
|
// Best cost.
|
|
if (CurrentCost > Candidate.SCost) {
|
|
DEBUG(traceCandidate("CCAND", Q, *I));
|
|
Candidate.SU = *I;
|
|
Candidate.RPDelta = RPDelta;
|
|
Candidate.SCost = CurrentCost;
|
|
FoundCandidate = BestCost;
|
|
continue;
|
|
}
|
|
|
|
// Fall through to original instruction order.
|
|
// Only consider node order if Candidate was chosen from this Q.
|
|
if (FoundCandidate == NoCand)
|
|
continue;
|
|
}
|
|
return FoundCandidate;
|
|
}
|
|
|
|
/// Pick the best candidate node from either the top or bottom queue.
|
|
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
SchedCandidate BotCand;
|
|
// Prefer bottom scheduling when heuristics are silent.
|
|
CandResult BotResult = pickNodeFromQueue(Bot.Available,
|
|
DAG->getBotRPTracker(), BotCand);
|
|
assert(BotResult != NoCand && "failed to find the first candidate");
|
|
|
|
// If either Q has a single candidate that provides the least increase in
|
|
// Excess pressure, we can immediately schedule from that Q.
|
|
//
|
|
// RegionCriticalPSets summarizes the pressure within the scheduled region and
|
|
// affects picking from either Q. If scheduling in one direction must
|
|
// increase pressure for one of the excess PSets, then schedule in that
|
|
// direction first to provide more freedom in the other direction.
|
|
if (BotResult == SingleExcess || BotResult == SingleCritical) {
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
// Check if the top Q has a better candidate.
|
|
SchedCandidate TopCand;
|
|
CandResult TopResult = pickNodeFromQueue(Top.Available,
|
|
DAG->getTopRPTracker(), TopCand);
|
|
assert(TopResult != NoCand && "failed to find the first candidate");
|
|
|
|
if (TopResult == SingleExcess || TopResult == SingleCritical) {
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
// If either Q has a single candidate that minimizes pressure above the
|
|
// original region's pressure pick it.
|
|
if (BotResult == SingleMax) {
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
if (TopResult == SingleMax) {
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
if (TopCand.SCost > BotCand.SCost) {
|
|
IsTopNode = true;
|
|
return TopCand.SU;
|
|
}
|
|
// Otherwise prefer the bottom candidate in node order.
|
|
IsTopNode = false;
|
|
return BotCand.SU;
|
|
}
|
|
|
|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
|
|
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return NULL;
|
|
}
|
|
SUnit *SU;
|
|
if (llvm::ForceTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
SchedCandidate TopCand;
|
|
CandResult TopResult =
|
|
pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopResult != NoCand && "failed to find the first candidate");
|
|
(void)TopResult;
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (llvm::ForceBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
SchedCandidate BotCand;
|
|
CandResult BotResult =
|
|
pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotResult != NoCand && "failed to find the first candidate");
|
|
(void)BotResult;
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidrectional(IsTopNode);
|
|
}
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
|
|
<< " Scheduling Instruction in cycle "
|
|
<< (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
|
|
SU->dump(DAG));
|
|
return SU;
|
|
}
|
|
|
|
/// Update the scheduler's state after scheduling a node. This is the same node
|
|
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
|
|
/// to update it's state based on the current cycle before MachineSchedStrategy
|
|
/// does.
|
|
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
|
|
if (IsTopNode) {
|
|
SU->TopReadyCycle = Top.CurrCycle;
|
|
Top.bumpNode(SU);
|
|
} else {
|
|
SU->BotReadyCycle = Bot.CurrCycle;
|
|
Bot.bumpNode(SU);
|
|
}
|
|
}
|