llvm-6502/lib/Target/Hexagon/HexagonMachineScheduler.cpp

694 lines
23 KiB
C++
Raw Normal View History

//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "misched"
#include "HexagonMachineScheduler.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/IR/Function.h"
using namespace llvm;
/// Platform specific modifications to DAG.
void VLIWMachineScheduler::postprocessDAG() {
SUnit* LastSequentialCall = NULL;
// Currently we only catch the situation when compare gets scheduled
// before preceding call.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
// Remember the call.
if (SUnits[su].getInstr()->isCall())
LastSequentialCall = &(SUnits[su]);
// Look for a compare that defines a predicate.
else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
}
}
/// Check if scheduling of this SU is possible
/// in the current packet.
/// It is _not_ precise (statefull), it is more like
/// another heuristic. Many corner cases are figured
/// empirically.
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
if (!SU || !SU->getInstr())
return false;
// First see if the pipeline could receive this instruction
// in the current cycle.
switch (SU->getInstr()->getOpcode()) {
default:
if (!ResourcesModel->canReserveResources(SU->getInstr()))
return false;
case TargetOpcode::EXTRACT_SUBREG:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::COPY:
case TargetOpcode::INLINEASM:
break;
}
// Now see if there are no other dependencies to instructions already
// in the packet.
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
if (Packet[i]->Succs.size() == 0)
continue;
for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
E = Packet[i]->Succs.end(); I != E; ++I) {
// Since we do not add pseudos to packets, might as well
// ignore order dependencies.
if (I->isCtrl())
continue;
if (I->getSUnit() == SU)
return false;
}
}
return true;
}
/// Keep track of available resources.
bool VLIWResourceModel::reserveResources(SUnit *SU) {
bool startNewCycle = false;
// Artificially reset state.
if (!SU) {
ResourcesModel->clearResources();
Packet.clear();
TotalPackets++;
return false;
}
// If this SU does not fit in the packet
// start a new one.
if (!isResourceAvailable(SU)) {
ResourcesModel->clearResources();
Packet.clear();
TotalPackets++;
startNewCycle = true;
}
switch (SU->getInstr()->getOpcode()) {
default:
ResourcesModel->reserveResources(SU->getInstr());
break;
case TargetOpcode::EXTRACT_SUBREG:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::PROLOG_LABEL:
case TargetOpcode::EH_LABEL:
case TargetOpcode::COPY:
case TargetOpcode::INLINEASM:
break;
}
Packet.push_back(SU);
#ifndef NDEBUG
DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
DEBUG(dbgs() << "\t[" << i << "] SU(");
DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
DEBUG(Packet[i]->getInstr()->dump());
}
#endif
// If packet is now full, reset the state so in the next cycle
// we start fresh.
if (Packet.size() >= SchedModel->getIssueWidth()) {
ResourcesModel->clearResources();
Packet.clear();
TotalPackets++;
startNewCycle = true;
}
return startNewCycle;
}
/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
void VLIWMachineScheduler::schedule() {
DEBUG(dbgs()
<< "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
<< " " << BB->getName()
<< " in_func " << BB->getParent()->getFunction()->getName()
<< " at loop depth " << MLI.getLoopDepth(BB)
<< " \n");
buildDAGWithRegPressure();
// Postprocess the DAG to add platform specific artificial dependencies.
postprocessDAG();
SmallVector<SUnit*, 8> TopRoots, BotRoots;
findRootsAndBiasEdges(TopRoots, BotRoots);
// Initialize the strategy before modifying the DAG.
SchedImpl->initialize(this);
// To view Height/Depth correctly, they should be accessed at least once.
//
// FIXME: SUnit::dumpAll always recompute depth and height now. The max
// depth/height could be computed directly from the roots and leaves.
DEBUG(unsigned maxH = 0;
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
if (SUnits[su].getHeight() > maxH)
maxH = SUnits[su].getHeight();
dbgs() << "Max Height " << maxH << "\n";);
DEBUG(unsigned maxD = 0;
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
if (SUnits[su].getDepth() > maxD)
maxD = SUnits[su].getDepth();
dbgs() << "Max Depth " << maxD << "\n";);
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
initQueues(TopRoots, BotRoots);
bool IsTopNode = false;
while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
if (!checkSchedLimit())
break;
scheduleMI(SU, IsTopNode);
updateQueues(SU, IsTopNode);
}
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
placeDebugValues();
}
void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
DAG = static_cast<VLIWMachineScheduler*>(dag);
SchedModel = DAG->getSchedModel();
Top.init(DAG, SchedModel);
Bot.init(DAG, SchedModel);
// Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
// are disabled, then these HazardRecs will be disabled.
const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
const TargetMachine &TM = DAG->MF.getTarget();
delete Top.HazardRec;
delete Bot.HazardRec;
Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
delete Top.ResourceModel;
delete Bot.ResourceModel;
Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
"-misched-topdown incompatible with -misched-bottomup");
}
void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
if (SU->isScheduled)
return;
for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
unsigned MinLatency = I->getLatency();
#ifndef NDEBUG
Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
#endif
if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
SU->TopReadyCycle = PredReadyCycle + MinLatency;
}
Top.releaseNode(SU, SU->TopReadyCycle);
}
void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
if (SU->isScheduled)
return;
assert(SU->getInstr() && "Scheduled SUnit must have instr");
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
unsigned MinLatency = I->getLatency();
#ifndef NDEBUG
Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
#endif
if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
SU->BotReadyCycle = SuccReadyCycle + MinLatency;
}
Bot.releaseNode(SU, SU->BotReadyCycle);
}
/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
if (HazardRec->isEnabled())
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
if (IssueCount + uops > SchedModel->getIssueWidth())
return true;
return false;
}
void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
unsigned ReadyCycle) {
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
// Check for interlocks first. For the purpose of other heuristics, an
// instruction that cannot issue appears as if it's not in the ReadyQueue.
if (ReadyCycle > CurrCycle || checkHazard(SU))
Pending.push(SU);
else
Available.push(SU);
}
/// Move the boundary of scheduled code by one cycle.
void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
unsigned Width = SchedModel->getIssueWidth();
IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
if (!HazardRec->isEnabled()) {
// Bypass HazardRec virtual calls.
CurrCycle = NextCycle;
} else {
// Bypass getHazardType calls in case of long latency.
for (; CurrCycle != NextCycle; ++CurrCycle) {
if (isTop())
HazardRec->AdvanceCycle();
else
HazardRec->RecedeCycle();
}
}
CheckPending = true;
DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
<< CurrCycle << '\n');
}
/// Move the boundary of scheduled code by one SUnit.
void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
bool startNewCycle = false;
// Update the reservation table.
if (HazardRec->isEnabled()) {
if (!isTop() && SU->isCall) {
// Calls are scheduled with their preceding instructions. For bottom-up
// scheduling, clear the pipeline state before emitting.
HazardRec->Reset();
}
HazardRec->EmitInstruction(SU);
}
// Update DFA model.
startNewCycle = ResourceModel->reserveResources(SU);
// Check the instruction group dispatch limit.
// TODO: Check if this SU must end a dispatch group.
IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
if (startNewCycle) {
DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
bumpCycle();
}
else
DEBUG(dbgs() << "*** IssueCount " << IssueCount
<< " at cycle " << CurrCycle << '\n');
}
/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
// If the available queue is empty, it is safe to reset MinReadyCycle.
if (Available.empty())
MinReadyCycle = UINT_MAX;
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
SUnit *SU = *(Pending.begin()+i);
unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
if (ReadyCycle > CurrCycle)
continue;
if (checkHazard(SU))
continue;
Available.push(SU);
Pending.remove(Pending.begin()+i);
--i; --e;
}
CheckPending = false;
}
/// Remove SU from the ready set for this boundary.
void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
if (Available.isInQueue(SU))
Available.remove(Available.find(SU));
else {
assert(Pending.isInQueue(SU) && "bad ready count");
Pending.remove(Pending.find(SU));
}
}
/// If this queue only has one ready candidate, return it. As a side effect,
/// advance the cycle until at least one node is ready. If multiple instructions
/// are ready, return NULL.
SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
if (CheckPending)
releasePending();
for (unsigned i = 0; Available.empty(); ++i) {
assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
"permanent hazard"); (void)i;
ResourceModel->reserveResources(0);
bumpCycle();
releasePending();
}
if (Available.size() == 1)
return *Available.begin();
return NULL;
}
#ifndef NDEBUG
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
const ReadyQueue &Q,
SUnit *SU, PressureElement P) {
dbgs() << Label << " " << Q.getName() << " ";
if (P.isValid())
dbgs() << DAG->TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
<< " ";
else
dbgs() << " ";
SU->dump(DAG);
}
#endif
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
SUnit *OnlyAvailablePred = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
SUnit &Pred = *I->getSUnit();
if (!Pred.isScheduled) {
// We found an available, but not scheduled, predecessor. If it's the
// only one we have found, keep track of it... otherwise give up.
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
return 0;
OnlyAvailablePred = &Pred;
}
}
return OnlyAvailablePred;
}
/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
/// of SU, return it, otherwise return null.
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
SUnit *OnlyAvailableSucc = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
SUnit &Succ = *I->getSUnit();
if (!Succ.isScheduled) {
// We found an available, but not scheduled, successor. If it's the
// only one we have found, keep track of it... otherwise give up.
if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
return 0;
OnlyAvailableSucc = &Succ;
}
}
return OnlyAvailableSucc;
}
// Constants used to denote relative importance of
// heuristic components for cost computation.
static const unsigned PriorityOne = 200;
static const unsigned PriorityTwo = 100;
static const unsigned PriorityThree = 50;
static const unsigned PriorityFour = 20;
static const unsigned ScaleTwo = 10;
static const unsigned FactorOne = 2;
/// Single point to compute overall scheduling cost.
/// TODO: More heuristics will be used soon.
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
SchedCandidate &Candidate,
RegPressureDelta &Delta,
bool verbose) {
// Initial trivial priority.
int ResCount = 1;
// Do not waste time on a node that is already scheduled.
if (!SU || SU->isScheduled)
return ResCount;
// Forced priority is high.
if (SU->isScheduleHigh)
ResCount += PriorityOne;
// Critical path first.
if (Q.getID() == TopQID) {
ResCount += (SU->getHeight() * ScaleTwo);
// If resources are available for it, multiply the
// chance of scheduling.
if (Top.ResourceModel->isResourceAvailable(SU))
ResCount <<= FactorOne;
} else {
ResCount += (SU->getDepth() * ScaleTwo);
// If resources are available for it, multiply the
// chance of scheduling.
if (Bot.ResourceModel->isResourceAvailable(SU))
ResCount <<= FactorOne;
}
unsigned NumNodesBlocking = 0;
if (Q.getID() == TopQID) {
// How many SUs does it block from scheduling?
// Look at all of the successors of this node.
// Count the number of nodes that
// this node is the sole unscheduled node for.
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
++NumNodesBlocking;
} else {
// How many unscheduled predecessors block this node?
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
++NumNodesBlocking;
}
ResCount += (NumNodesBlocking * ScaleTwo);
// Factor in reg pressure as a heuristic.
ResCount -= (Delta.Excess.UnitIncrease*PriorityThree);
ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree);
DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
return ResCount;
}
/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
SchedCandidate &Candidate) {
DEBUG(Q.dump());
// getMaxPressureDelta temporarily modifies the tracker.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
// BestSU remains NULL if no top candidates beat the best existing candidate.
CandResult FoundCandidate = NoCand;
for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
RegPressureDelta RPDelta;
TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
DAG->getRegionCriticalPSets(),
DAG->getRegPressure().MaxSetPressure);
int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
// Initialize the candidate if needed.
if (!Candidate.SU) {
Candidate.SU = *I;
Candidate.RPDelta = RPDelta;
Candidate.SCost = CurrentCost;
FoundCandidate = NodeOrder;
continue;
}
// Best cost.
if (CurrentCost > Candidate.SCost) {
DEBUG(traceCandidate("CCAND", Q, *I));
Candidate.SU = *I;
Candidate.RPDelta = RPDelta;
Candidate.SCost = CurrentCost;
FoundCandidate = BestCost;
continue;
}
// Fall through to original instruction order.
// Only consider node order if Candidate was chosen from this Q.
if (FoundCandidate == NoCand)
continue;
}
return FoundCandidate;
}
/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
SchedCandidate BotCand;
// Prefer bottom scheduling when heuristics are silent.
CandResult BotResult = pickNodeFromQueue(Bot.Available,
DAG->getBotRPTracker(), BotCand);
assert(BotResult != NoCand && "failed to find the first candidate");
// If either Q has a single candidate that provides the least increase in
// Excess pressure, we can immediately schedule from that Q.
//
// RegionCriticalPSets summarizes the pressure within the scheduled region and
// affects picking from either Q. If scheduling in one direction must
// increase pressure for one of the excess PSets, then schedule in that
// direction first to provide more freedom in the other direction.
if (BotResult == SingleExcess || BotResult == SingleCritical) {
IsTopNode = false;
return BotCand.SU;
}
// Check if the top Q has a better candidate.
SchedCandidate TopCand;
CandResult TopResult = pickNodeFromQueue(Top.Available,
DAG->getTopRPTracker(), TopCand);
assert(TopResult != NoCand && "failed to find the first candidate");
if (TopResult == SingleExcess || TopResult == SingleCritical) {
IsTopNode = true;
return TopCand.SU;
}
// If either Q has a single candidate that minimizes pressure above the
// original region's pressure pick it.
if (BotResult == SingleMax) {
IsTopNode = false;
return BotCand.SU;
}
if (TopResult == SingleMax) {
IsTopNode = true;
return TopCand.SU;
}
if (TopCand.SCost > BotCand.SCost) {
IsTopNode = true;
return TopCand.SU;
}
// Otherwise prefer the bottom candidate in node order.
IsTopNode = false;
return BotCand.SU;
}
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return NULL;
}
SUnit *SU;
if (llvm::ForceTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
SchedCandidate TopCand;
CandResult TopResult =
pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
assert(TopResult != NoCand && "failed to find the first candidate");
(void)TopResult;
SU = TopCand.SU;
}
IsTopNode = true;
} else if (llvm::ForceBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
SchedCandidate BotCand;
CandResult BotResult =
pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
assert(BotResult != NoCand && "failed to find the first candidate");
(void)BotResult;
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidrectional(IsTopNode);
}
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
<< " Scheduling Instruction in cycle "
<< (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
SU->dump(DAG));
return SU;
}
/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
/// to update it's state based on the current cycle before MachineSchedStrategy
/// does.
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
if (IsTopNode) {
SU->TopReadyCycle = Top.CurrCycle;
Top.bumpNode(SU);
} else {
SU->BotReadyCycle = Bot.CurrCycle;
Bot.bumpNode(SU);
}
}