llvm-6502/lib/CodeGen/VirtRegMap.cpp
2006-05-04 17:52:23 +00:00

870 lines
35 KiB
C++

//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
namespace {
Statistic<> NumSpills("spiller", "Number of register spills");
Statistic<> NumStores("spiller", "Number of stores added");
Statistic<> NumLoads ("spiller", "Number of loads added");
Statistic<> NumReused("spiller", "Number of values reused");
Statistic<> NumDSE ("spiller", "Number of dead stores elided");
Statistic<> NumDCE ("spiller", "Number of copies elided");
enum SpillerName { simple, local };
cl::opt<SpillerName>
SpillerOpt("spiller",
cl::desc("Spiller to use: (default: local)"),
cl::Prefix,
cl::values(clEnumVal(simple, " simple spiller"),
clEnumVal(local, " local spiller"),
clEnumValEnd),
cl::init(local));
}
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
void VirtRegMap::grow() {
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
Virt2StackSlotMap[virtReg] = frameIndex;
++NumSpills;
return frameIndex;
}
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
Virt2StackSlotMap[virtReg] = frameIndex;
}
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
unsigned OpNo, MachineInstr *NewMI) {
// Move previous memory references folded to new instruction.
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
MI2VirtMap.erase(I++);
}
ModRef MRInfo;
if (!OldMI->getOperand(OpNo).isDef()) {
assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
MRInfo = isRef;
} else {
MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
}
// add new memory reference
MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}
void VirtRegMap::print(std::ostream &OS) const {
const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
OS << "********** REGISTER MAP **********\n";
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
}
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
OS << '\n';
}
void VirtRegMap::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//
Spiller::~Spiller() {}
namespace {
struct SimpleSpiller : public Spiller {
bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
};
}
bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
DEBUG(std::cerr << "********** Function: "
<< MF.getFunction()->getName() << '\n');
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo &MRI = *TM.getRegisterInfo();
bool *PhysRegsUsed = MF.getUsedPhysregs();
// LoadedRegs - Keep track of which vregs are loaded, so that we only load
// each vreg once (in the case where a spilled vreg is used by multiple
// operands). This is always smaller than the number of operands to the
// current machine instr, so it should be small.
std::vector<unsigned> LoadedRegs;
for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::iterator MII = MBB.begin(),
E = MBB.end(); MII != E; ++MII) {
MachineInstr &MI = *MII;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegister() && MO.getReg())
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned VirtReg = MO.getReg();
unsigned PhysReg = VRM.getPhys(VirtReg);
if (VRM.hasStackSlot(VirtReg)) {
int StackSlot = VRM.getStackSlot(VirtReg);
const TargetRegisterClass* RC =
MF.getSSARegMap()->getRegClass(VirtReg);
if (MO.isUse() &&
std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
== LoadedRegs.end()) {
MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
LoadedRegs.push_back(VirtReg);
++NumLoads;
DEBUG(std::cerr << '\t' << *prior(MII));
}
if (MO.isDef()) {
MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
++NumStores;
}
}
PhysRegsUsed[PhysReg] = true;
MI.getOperand(i).setReg(PhysReg);
} else {
PhysRegsUsed[MO.getReg()] = true;
}
}
DEBUG(std::cerr << '\t' << MI);
LoadedRegs.clear();
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Local Spiller Implementation
//===----------------------------------------------------------------------===//
namespace {
/// LocalSpiller - This spiller does a simple pass over the machine basic
/// block to attempt to keep spills in registers as much as possible for
/// blocks that have low register pressure (the vreg may be spilled due to
/// register pressure in other blocks).
class LocalSpiller : public Spiller {
const MRegisterInfo *MRI;
const TargetInstrInfo *TII;
public:
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
MRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n");
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB)
RewriteMBB(*MBB, VRM);
return true;
}
private:
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
std::multimap<unsigned, int> &PhysRegs);
void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
std::multimap<unsigned, int> &PhysRegs);
void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
std::multimap<unsigned, int> &PhysRegs);
};
}
/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
/// top down, keep track of which spills slots are available in each register.
///
/// Note that not all physregs are created equal here. In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using that
/// we cannot CHANGE, but we can read if we like. We keep track of this on a
/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
/// entries. The predicate 'canClobberPhysReg()' checks this bit and
/// addAvailable sets it if.
class AvailableSpills {
const MRegisterInfo *MRI;
const TargetInstrInfo *TII;
// SpillSlotsAvailable - This map keeps track of all of the spilled virtual
// register values that are still available, due to being loaded or stored to,
// but not invalidated yet.
std::map<int, unsigned> SpillSlotsAvailable;
// PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
// which stack slot values are currently held by a physreg. This is used to
// invalidate entries in SpillSlotsAvailable when a physreg is modified.
std::multimap<unsigned, int> PhysRegsAvailable;
void ClobberPhysRegOnly(unsigned PhysReg);
public:
AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
: MRI(mri), TII(tii) {
}
/// getSpillSlotPhysReg - If the specified stack slot is available in a
/// physical register, return that PhysReg, otherwise return 0.
unsigned getSpillSlotPhysReg(int Slot) const {
std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
if (I != SpillSlotsAvailable.end())
return I->second >> 1; // Remove the CanClobber bit.
return 0;
}
const MRegisterInfo *getRegInfo() const { return MRI; }
/// addAvailable - Mark that the specified stack slot is available in the
/// specified physreg. If CanClobber is true, the physreg can be modified at
/// any time without changing the semantics of the program.
void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
// If this stack slot is thought to be available in some other physreg,
// remove its record.
ModifyStackSlot(Slot);
PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
DEBUG(std::cerr << "Remembering SS#" << Slot << " in physreg "
<< MRI->getName(Reg) << "\n");
}
/// canClobberPhysReg - Return true if the spiller is allowed to change the
/// value of the specified stackslot register if it desires. The specified
/// stack slot must be available in a physreg for this query to make sense.
bool canClobberPhysReg(int Slot) const {
assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
return SpillSlotsAvailable.find(Slot)->second & 1;
}
/// ClobberPhysReg - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void ClobberPhysReg(unsigned PhysReg);
/// ModifyStackSlot - This method is called when the value in a stack slot
/// changes. This removes information about which register the previous value
/// for this slot lives in (as the previous value is dead now).
void ModifyStackSlot(int Slot);
};
/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
std::multimap<unsigned, int>::iterator I =
PhysRegsAvailable.lower_bound(PhysReg);
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
int Slot = I->second;
PhysRegsAvailable.erase(I++);
assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsAvailable.erase(Slot);
DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
<< " clobbered, invalidating SS#" << Slot << "\n");
}
}
/// ClobberPhysReg - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
ClobberPhysRegOnly(*AS);
ClobberPhysRegOnly(PhysReg);
}
/// ModifyStackSlot - This method is called when the value in a stack slot
/// changes. This removes information about which register the previous value
/// for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlot(int Slot) {
std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
if (It == SpillSlotsAvailable.end()) return;
unsigned Reg = It->second >> 1;
SpillSlotsAvailable.erase(It);
// This register may hold the value of multiple stack slots, only remove this
// stack slot from the set of values the register contains.
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
for (; ; ++I) {
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
"Map inverse broken!");
if (I->second == Slot) break;
}
PhysRegsAvailable.erase(I);
}
// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand. See comments below.
namespace {
struct ReusedOp {
// The MachineInstr operand that reused an available value.
unsigned Operand;
// StackSlot - The spill slot of the value being reused.
unsigned StackSlot;
// PhysRegReused - The physical register the value was available in.
unsigned PhysRegReused;
// AssignedPhysReg - The physreg that was assigned for use by the reload.
unsigned AssignedPhysReg;
// VirtReg - The virtual register itself.
unsigned VirtReg;
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
unsigned vreg)
: Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
VirtReg(vreg) {}
};
/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
/// is reused instead of reloaded.
class ReuseInfo {
MachineInstr &MI;
std::vector<ReusedOp> Reuses;
public:
ReuseInfo(MachineInstr &mi) : MI(mi) {}
bool hasReuses() const {
return !Reuses.empty();
}
/// addReuse - If we choose to reuse a virtual register that is already
/// available instead of reloading it, remember that we did so.
void addReuse(unsigned OpNo, unsigned StackSlot,
unsigned PhysRegReused, unsigned AssignedPhysReg,
unsigned VirtReg) {
// If the reload is to the assigned register anyway, no undo will be
// required.
if (PhysRegReused == AssignedPhysReg) return;
// Otherwise, remember this.
Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
AssignedPhysReg, VirtReg));
}
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
AvailableSpills &Spills,
std::map<int, MachineInstr*> &MaybeDeadStores) {
if (Reuses.empty()) return PhysReg; // This is most often empty.
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
ReusedOp &Op = Reuses[ro];
// If we find some other reuse that was supposed to use this register
// exactly for its reload, we can change this reload to use ITS reload
// register.
if (Op.PhysRegReused == PhysReg) {
// Yup, use the reload register that we didn't use before.
unsigned NewReg = Op.AssignedPhysReg;
// Remove the record for the previous reuse. We know it can never be
// invalidated now.
Reuses.erase(Reuses.begin()+ro);
return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
} else {
// Otherwise, we might also have a problem if a previously reused
// value aliases the new register. If so, codegen the previous reload
// and use this one.
unsigned PRRU = Op.PhysRegReused;
const MRegisterInfo *MRI = Spills.getRegInfo();
if (MRI->areAliases(PRRU, PhysReg)) {
// Okay, we found out that an alias of a reused register
// was used. This isn't good because it means we have
// to undo a previous reuse.
MachineBasicBlock *MBB = MI->getParent();
const TargetRegisterClass *AliasRC =
MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
// Copy Op out of the vector and remove it, we're going to insert an
// explicit load for it.
ReusedOp NewOp = Op;
Reuses.erase(Reuses.begin()+ro);
// Ok, we're going to try to reload the assigned physreg into the
// slot that we were supposed to in the first place. However, that
// register could hold a reuse. Check to see if it conflicts or
// would prefer us to use a different register.
unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
MI, Spills, MaybeDeadStores);
MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
NewOp.StackSlot, AliasRC);
Spills.ClobberPhysReg(NewPhysReg);
Spills.ClobberPhysReg(NewOp.PhysRegReused);
// Any stores to this stack slot are not dead anymore.
MaybeDeadStores.erase(NewOp.StackSlot);
MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
++NumLoads;
DEBUG(MachineBasicBlock::iterator MII = MI;
std::cerr << '\t' << *prior(MII));
DEBUG(std::cerr << "Reuse undone!\n");
--NumReused;
// Finally, PhysReg is now available, go ahead and use it.
return PhysReg;
}
}
}
return PhysReg;
}
};
}
/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them. If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
// Spills - Keep track of which spilled values are available in physregs so
// that we can choose to reuse the physregs instead of emitting reloads.
AvailableSpills Spills(MRI, TII);
// DefAndUseVReg - When we see a def&use operand that is spilled, keep track
// of it. ".first" is the machine operand index (should always be 0 for now),
// and ".second" is the virtual register that is spilled.
std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
// MaybeDeadStores - When we need to write a value back into a stack slot,
// keep track of the inserted store. If the stack slot value is never read
// (because the value was used from some available register, for example), and
// subsequently stored to, the original store is dead. This map keeps track
// of inserted stores that are not used. If we see a subsequent store to the
// same stack slot, the original store is deleted.
std::map<int, MachineInstr*> MaybeDeadStores;
bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
MII != E; ) {
MachineInstr &MI = *MII;
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
/// ReusedOperands - Keep track of operand reuse in case we need to undo
/// reuse.
ReuseInfo ReusedOperands(MI);
DefAndUseVReg.clear();
// Process all of the spilled uses and all non spilled reg references.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isRegister() || MO.getReg() == 0)
continue; // Ignore non-register operands.
if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
// Ignore physregs for spilling, but remember that it is used by this
// function.
PhysRegsUsed[MO.getReg()] = true;
continue;
}
assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
"Not a virtual or a physical register?");
unsigned VirtReg = MO.getReg();
if (!VRM.hasStackSlot(VirtReg)) {
// This virtual register was assigned a physreg!
unsigned Phys = VRM.getPhys(VirtReg);
PhysRegsUsed[Phys] = true;
MI.getOperand(i).setReg(Phys);
continue;
}
// This virtual register is now known to be a spilled value.
if (!MO.isUse())
continue; // Handle defs in the loop below (handle use&def here though)
// If this is both a def and a use, we need to emit a store to the
// stack slot after the instruction. Keep track of D&U operands
// because we are about to change it to a physreg here.
if (MO.isDef()) {
// Remember that this was a def-and-use operand, and that the
// stack slot is live after this instruction executes.
DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
}
int StackSlot = VRM.getStackSlot(VirtReg);
unsigned PhysReg;
// Check to see if this stack slot is available.
if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
// Don't reuse it for a def&use operand if we aren't allowed to change
// the physreg!
if (!MO.isDef() || Spills.canClobberPhysReg(StackSlot)) {
// If this stack slot value is already available, reuse it!
DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
<< MRI->getName(PhysReg) << " for vreg"
<< VirtReg <<" instead of reloading into physreg "
<< MRI->getName(VRM.getPhys(VirtReg)) << "\n");
MI.getOperand(i).setReg(PhysReg);
// The only technical detail we have is that we don't know that
// PhysReg won't be clobbered by a reloaded stack slot that occurs
// later in the instruction. In particular, consider 'op V1, V2'.
// If V1 is available in physreg R0, we would choose to reuse it
// here, instead of reloading it into the register the allocator
// indicated (say R1). However, V2 might have to be reloaded
// later, and it might indicate that it needs to live in R0. When
// this occurs, we need to have information available that
// indicates it is safe to use R1 for the reload instead of R0.
//
// To further complicate matters, we might conflict with an alias,
// or R0 and R1 might not be compatible with each other. In this
// case, we actually insert a reload for V1 in R1, ensuring that
// we can get at R0 or its alias.
ReusedOperands.addReuse(i, StackSlot, PhysReg,
VRM.getPhys(VirtReg), VirtReg);
++NumReused;
continue;
}
// Otherwise we have a situation where we have a two-address instruction
// whose mod/ref operand needs to be reloaded. This reload is already
// available in some register "PhysReg", but if we used PhysReg as the
// operand to our 2-addr instruction, the instruction would modify
// PhysReg. This isn't cool if something later uses PhysReg and expects
// to get its initial value.
//
// To avoid this problem, and to avoid doing a load right after a store,
// we emit a copy from PhysReg into the designated register for this
// operand.
unsigned DesignatedReg = VRM.getPhys(VirtReg);
assert(DesignatedReg && "Must map virtreg to physreg!");
// Note that, if we reused a register for a previous operand, the
// register we want to reload into might not actually be
// available. If this occurs, use the register indicated by the
// reuser.
if (ReusedOperands.hasReuses())
DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
Spills, MaybeDeadStores);
// If the mapped designated register is actually the physreg we have
// incoming, we don't need to inserted a dead copy.
if (DesignatedReg == PhysReg) {
// If this stack slot value is already available, reuse it!
DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
<< MRI->getName(PhysReg) << " for vreg"
<< VirtReg
<< " instead of reloading into same physreg.\n");
MI.getOperand(i).setReg(PhysReg);
++NumReused;
continue;
}
const TargetRegisterClass* RC =
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
PhysRegsUsed[DesignatedReg] = true;
MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
// This invalidates DesignatedReg.
Spills.ClobberPhysReg(DesignatedReg);
Spills.addAvailable(StackSlot, DesignatedReg);
MI.getOperand(i).setReg(DesignatedReg);
DEBUG(std::cerr << '\t' << *prior(MII));
++NumReused;
continue;
}
// Otherwise, reload it and remember that we have it.
PhysReg = VRM.getPhys(VirtReg);
assert(PhysReg && "Must map virtreg to physreg!");
const TargetRegisterClass* RC =
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
// Note that, if we reused a register for a previous operand, the
// register we want to reload into might not actually be
// available. If this occurs, use the register indicated by the
// reuser.
if (ReusedOperands.hasReuses())
PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
Spills, MaybeDeadStores);
PhysRegsUsed[PhysReg] = true;
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
// This invalidates PhysReg.
Spills.ClobberPhysReg(PhysReg);
// Any stores to this stack slot are not dead anymore.
MaybeDeadStores.erase(StackSlot);
Spills.addAvailable(StackSlot, PhysReg);
++NumLoads;
MI.getOperand(i).setReg(PhysReg);
DEBUG(std::cerr << '\t' << *prior(MII));
}
// Loop over all of the implicit defs, clearing them from our available
// sets.
for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
*ImpDef; ++ImpDef) {
PhysRegsUsed[*ImpDef] = true;
Spills.ClobberPhysReg(*ImpDef);
}
DEBUG(std::cerr << '\t' << MI);
// If we have folded references to memory operands, make sure we clear all
// physical registers that may contain the value of the spilled virtual
// register
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
DEBUG(std::cerr << "Folded vreg: " << I->second.first << " MR: "
<< I->second.second);
unsigned VirtReg = I->second.first;
VirtRegMap::ModRef MR = I->second.second;
if (!VRM.hasStackSlot(VirtReg)) {
DEBUG(std::cerr << ": No stack slot!\n");
continue;
}
int SS = VRM.getStackSlot(VirtReg);
DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
// If this folded instruction is just a use, check to see if it's a
// straight load from the virt reg slot.
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
int FrameIdx;
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
// If this spill slot is available, turn it into a copy (or nothing)
// instead of leaving it as a load!
unsigned InReg;
if (FrameIdx == SS && (InReg = Spills.getSpillSlotPhysReg(SS))) {
DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
MachineFunction &MF = *MBB.getParent();
if (DestReg != InReg) {
MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
MF.getSSARegMap()->getRegClass(VirtReg));
// Revisit the copy so we make sure to notice the effects of the
// operation on the destreg (either needing to RA it if it's
// virtual or needing to clobber any values if it's physical).
NextMII = &MI;
--NextMII; // backtrack to the copy.
}
VRM.RemoveFromFoldedVirtMap(&MI);
MBB.erase(&MI);
goto ProcessNextInst;
}
}
}
// If this reference is not a use, any previous store is now dead.
// Otherwise, the store to this stack slot is not dead anymore.
std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
if (MDSI != MaybeDeadStores.end()) {
if (MR & VirtRegMap::isRef) // Previous store is not dead.
MaybeDeadStores.erase(MDSI);
else {
// If we get here, the store is dead, nuke it now.
assert(VirtRegMap::isMod && "Can't be modref!");
DEBUG(std::cerr << "Removed dead store:\t" << *MDSI->second);
MBB.erase(MDSI->second);
VRM.RemoveFromFoldedVirtMap(MDSI->second);
MaybeDeadStores.erase(MDSI);
++NumDSE;
}
}
// If the spill slot value is available, and this is a new definition of
// the value, the value is not available anymore.
if (MR & VirtRegMap::isMod) {
// Notice that the value in this stack slot has been modified.
Spills.ModifyStackSlot(SS);
// If this is *just* a mod of the value, check to see if this is just a
// store to the spill slot (i.e. the spill got merged into the copy). If
// so, realize that the vreg is available now, and add the store to the
// MaybeDeadStore info.
int StackSlot;
if (!(MR & VirtRegMap::isRef)) {
if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
"Src hasn't been allocated yet?");
// Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
// this as a potentially dead store in case there is a subsequent
// store into the stack slot without a read from it.
MaybeDeadStores[StackSlot] = &MI;
// If the stack slot value was previously available in some other
// register, change it now. Otherwise, make the register available,
// in PhysReg.
Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
}
}
}
}
// Process all of the spilled defs.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegister() && MO.getReg() && MO.isDef()) {
unsigned VirtReg = MO.getReg();
if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
// Check to see if this is a def-and-use vreg operand that we do need
// to insert a store for.
bool OpTakenCareOf = false;
if (MO.isUse() && !DefAndUseVReg.empty()) {
for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
if (DefAndUseVReg[dau].first == i) {
VirtReg = DefAndUseVReg[dau].second;
OpTakenCareOf = true;
break;
}
}
if (!OpTakenCareOf) {
// Check to see if this is a noop copy. If so, eliminate the
// instruction before considering the dest reg to be changed.
unsigned Src, Dst;
if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
++NumDCE;
DEBUG(std::cerr << "Removing now-noop copy: " << MI);
MBB.erase(&MI);
VRM.RemoveFromFoldedVirtMap(&MI);
goto ProcessNextInst;
}
Spills.ClobberPhysReg(VirtReg);
continue;
}
}
// The only vregs left are stack slot definitions.
int StackSlot = VRM.getStackSlot(VirtReg);
const TargetRegisterClass *RC =
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
unsigned PhysReg;
// If this is a def&use operand, and we used a different physreg for
// it than the one assigned, make sure to execute the store from the
// correct physical register.
if (MO.getReg() == VirtReg)
PhysReg = VRM.getPhys(VirtReg);
else
PhysReg = MO.getReg();
PhysRegsUsed[PhysReg] = true;
MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
DEBUG(std::cerr << "Store:\t" << *next(MII));
MI.getOperand(i).setReg(PhysReg);
// Check to see if this is a noop copy. If so, eliminate the
// instruction before considering the dest reg to be changed.
{
unsigned Src, Dst;
if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
++NumDCE;
DEBUG(std::cerr << "Removing now-noop copy: " << MI);
MBB.erase(&MI);
VRM.RemoveFromFoldedVirtMap(&MI);
goto ProcessNextInst;
}
}
// If there is a dead store to this stack slot, nuke it now.
MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
if (LastStore) {
DEBUG(std::cerr << "Removed dead store:\t" << *LastStore);
++NumDSE;
MBB.erase(LastStore);
VRM.RemoveFromFoldedVirtMap(LastStore);
}
LastStore = next(MII);
// If the stack slot value was previously available in some other
// register, change it now. Otherwise, make the register available,
// in PhysReg.
Spills.ModifyStackSlot(StackSlot);
Spills.ClobberPhysReg(PhysReg);
Spills.addAvailable(StackSlot, PhysReg);
++NumStores;
}
}
ProcessNextInst:
MII = NextMII;
}
}
llvm::Spiller* llvm::createSpiller() {
switch (SpillerOpt) {
default: assert(0 && "Unreachable!");
case local:
return new LocalSpiller();
case simple:
return new SimpleSpiller();
}
}