llvm-6502/lib/Target/X86/X86CallingConv.td
2007-11-27 19:28:48 +00:00

244 lines
9.2 KiB
TableGen

//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX.
CCIfType<[i8] , CCAssignToReg<[AL]>>,
CCIfType<[i16], CCAssignToReg<[AX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
// Vector types are returned in XMM0 and XMM1, when they fit. If the target
// doesn't have XMM registers, it won't have vector types.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1]>>,
// MMX vector types are always returned in MM0. If the target doesn't have
// MM0, it doesn't support these vector types.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[MM0]>>,
// Long double types are always returned in ST0 (even with SSE).
CCIfType<[f80], CCAssignToReg<[ST0]>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in ST0, otherwise it is the
// same as the common X86 calling conv.
CCIfType<[f32], CCAssignToReg<[ST0]>>,
CCIfType<[f64], CCAssignToReg<[ST0]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
// SSE2, otherwise it is the the C calling conventions.
// This can happen when a float, 2 x float, or 3 x float vector is split by
// target lowering, and is returned in 1-3 sse regs.
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCIfType<[f32], CCAssignToReg<[XMM0]>>,
CCIfType<[f64], CCAssignToReg<[XMM0]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
// If FastCC, use RetCC_X86_32_Fast.
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
]>;
// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
// Always just the same as C calling conv for X86-64.
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the return-value convention used for the entire X86 backend.
def RetCC_X86 : CallingConv<[
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
CCDelegateTo<RetCC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
CCIfStruct<CCStructAssign<[RDI, RSI, RDX, RCX, R8, R9 ]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
// The first 8 MMX vector arguments are passed in GPRs.
CCIfType<[v8i8, v4i16, v2i32, v1i64],
CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
// Tail call convention (fast): One register is reserved for target address,
// namely R9
def CC_X86_64_TailCall : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
CCIfStruct<CCStructAssign<[RDI, RSI, RDX, RCX, R8]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
// The first 8 MMX vector arguments are passed in GPRs.
CCIfType<[v8i8, v4i16, v2i32, v1i64],
CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack, and the first 4 vector values go in XMM
/// regs.
def CC_X86_32_Common : CallingConv<[
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Doubles get 8-byte slots that are 4-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 4>>,
// Long doubles get slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
// The first 4 vector arguments are passed in XMM registers.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// Other vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned. They are
// passed in the parameter area.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
def CC_X86_32_C : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in ECX.
CCIfNest<CCAssignToReg<[ECX]>>,
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
/// Same as C calling convention except for non-free ECX which is used for storing
/// a potential pointer to the tail called function.
def CC_X86_32_TailCall : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Nested function trampolines are currently not supported by fastcc.
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCall : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;