llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp
Duncan Sands 37bcda3de9 Implement a bit more softfloat support in
LegalizeTypes.  Correct the load logic so
that it actually works, and also teach it
to handle floating point extending loads.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49923 91177308-0d34-0410-b5e6-96231b3b80d8
2008-04-18 20:56:03 +00:00

357 lines
14 KiB
C++

//===-- LegalizeTypesFloatToInt.cpp - LegalizeTypes float to int support --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements float to integer conversion for LegalizeTypes. This
// is the act of turning a computation in an invalid floating point type into
// a computation in an integer type of the same size. For example, turning
// f32 arithmetic into operations using i32. Also known as "soft float".
// The result is equivalent to bitcasting the float value to the integer type.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/DerivedTypes.h"
#include "LegalizeTypes.h"
using namespace llvm;
/// GetFPLibCall - Return the right libcall for the given floating point type.
static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_PPCF128) {
return
VT == MVT::f32 ? Call_F32 :
VT == MVT::f64 ? Call_F64 :
VT == MVT::f80 ? Call_F80 :
VT == MVT::ppcf128 ? Call_PPCF128 :
RTLIB::UNKNOWN_LIBCALL;
}
//===----------------------------------------------------------------------===//
// Result Float to Integer Conversion.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::FloatToIntResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "FloatToInt node result " << ResNo << ": "; N->dump(&DAG);
cerr << "\n");
SDOperand R = SDOperand();
// FIXME: Custom lowering for float-to-int?
#if 0
// See if the target wants to custom convert this node to an integer.
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom) {
// If the target wants to, allow it to lower this itself.
if (SDNode *P = TLI.FloatToIntOperationResult(N, DAG)) {
// Everything that once used N now uses P. We are guaranteed that the
// result value types of N and the result value types of P match.
ReplaceNodeWith(N, P);
return;
}
}
#endif
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "FloatToIntResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to convert the result of this operator!");
abort();
case ISD::BIT_CONVERT: R = FloatToIntRes_BIT_CONVERT(N); break;
case ISD::BUILD_PAIR: R = FloatToIntRes_BUILD_PAIR(N); break;
case ISD::ConstantFP:
R = FloatToIntRes_ConstantFP(cast<ConstantFPSDNode>(N));
break;
case ISD::FCOPYSIGN: R = FloatToIntRes_FCOPYSIGN(N); break;
case ISD::LOAD: R = FloatToIntRes_LOAD(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = FloatToIntRes_XINT_TO_FP(N); break;
case ISD::FADD: R = FloatToIntRes_FADD(N); break;
case ISD::FMUL: R = FloatToIntRes_FMUL(N); break;
case ISD::FSUB: R = FloatToIntRes_FSUB(N); break;
}
// If R is null, the sub-method took care of registering the result.
if (R.Val)
SetIntegerOp(SDOperand(N, ResNo), R);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_BIT_CONVERT(SDNode *N) {
return BitConvertToInteger(N->getOperand(0));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_BUILD_PAIR(SDNode *N) {
// Convert the inputs to integers, and build a new pair out of them.
return DAG.getNode(ISD::BUILD_PAIR,
TLI.getTypeToTransformTo(N->getValueType(0)),
BitConvertToInteger(N->getOperand(0)),
BitConvertToInteger(N->getOperand(1)));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_ConstantFP(ConstantFPSDNode *N) {
return DAG.getConstant(N->getValueAPF().convertToAPInt(),
TLI.getTypeToTransformTo(N->getValueType(0)));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FADD(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FCOPYSIGN(SDNode *N) {
SDOperand LHS = GetIntegerOp(N->getOperand(0));
SDOperand RHS = BitConvertToInteger(N->getOperand(1));
MVT::ValueType LVT = LHS.getValueType();
MVT::ValueType RVT = RHS.getValueType();
unsigned LSize = MVT::getSizeInBits(LVT);
unsigned RSize = MVT::getSizeInBits(RVT);
// First get the sign bit of second operand.
SDOperand SignBit = DAG.getNode(ISD::SHL, RVT, DAG.getConstant(1, RVT),
DAG.getConstant(RSize - 1,
TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::AND, RVT, RHS, SignBit);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = MVT::getSizeInBits(RVT) - MVT::getSizeInBits(LVT);
if (SizeDiff > 0) {
SignBit = DAG.getNode(ISD::SRL, RVT, SignBit,
DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::TRUNCATE, LVT, SignBit);
} else if (SizeDiff < 0) {
SignBit = DAG.getNode(ISD::ANY_EXTEND, LVT, SignBit);
SignBit = DAG.getNode(ISD::SHL, LVT, SignBit,
DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
}
// Clear the sign bit of the first operand.
SDOperand Mask = DAG.getNode(ISD::SHL, LVT, DAG.getConstant(1, LVT),
DAG.getConstant(LSize - 1,
TLI.getShiftAmountTy()));
Mask = DAG.getNode(ISD::SUB, LVT, Mask, DAG.getConstant(1, LVT));
LHS = DAG.getNode(ISD::AND, LVT, LHS, Mask);
// Or the value with the sign bit.
return DAG.getNode(ISD::OR, LVT, LHS, SignBit);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FMUL(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FSUB(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
if (L->getExtensionType() == ISD::NON_EXTLOAD)
return DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(), NVT,
L->isVolatile(), L->getAlignment());
// Do a non-extending load followed by FP_EXTEND.
SDOperand NL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD,
L->getMemoryVT(), L->getChain(),
L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(),
L->getMemoryVT(),
L->isVolatile(), L->getAlignment());
return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NL));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_XINT_TO_FP(SDNode *N) {
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
MVT::ValueType DestVT = N->getValueType(0);
SDOperand Op = N->getOperand(0);
if (Op.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// Get the stack frame index of a 8 byte buffer.
SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
SDOperand Offset = DAG.getConstant(MVT::getSizeInBits(MVT::i32) / 8,
TLI.getPointerTy());
// set up Hi and Lo (into buffer) address based on endian
SDOperand Hi = StackSlot;
SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot, Offset);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDOperand OpMapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
OpMapped = DAG.getNode(ISD::XOR, MVT::i32, Op, SignBit);
} else {
OpMapped = Op;
}
// store the lo of the constructed double - based on integer input
SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
OpMapped, Lo, NULL, 0);
// initial hi portion of constructed double
SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
// store the hi of the constructed double - biased exponent
SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
// load the constructed double
SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
// FP constant to bias correct the final result
SDOperand Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL)
: BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// subtract the bias
SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
// final result
SDOperand Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) {
Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) {
Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
}
return BitConvertToInteger(Result);
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op), Op,
DAG.getConstant(0, Op.getValueType()),
ISD::SETLT);
SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (Op.getValueType()) {
default: assert(0 && "Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0);
else {
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestVT,
DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
MVT::f32);
}
return BitConvertToInteger(DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg));
}
//===----------------------------------------------------------------------===//
// Operand Float to Integer Conversion..
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::FloatToIntOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "FloatToInt node operand " << OpNo << ": "; N->dump(&DAG);
cerr << "\n");
SDOperand Res(0, 0);
// FIXME: Custom lowering for float-to-int?
#if 0
if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
== TargetLowering::Custom)
Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
#endif
if (Res.Val == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "FloatToIntOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to convert this operator's operand!");
abort();
case ISD::BIT_CONVERT: Res = FloatToIntOp_BIT_CONVERT(N); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::FloatToIntOp_BIT_CONVERT(SDNode *N) {
return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
GetIntegerOp(N->getOperand(0)));
}