mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-31 10:34:17 +00:00
ea4af65b72
* Add links to all subtrees when a shadow node gets resolved * Add critical node handling git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2001 91177308-0d34-0410-b5e6-96231b3b80d8
297 lines
11 KiB
C++
297 lines
11 KiB
C++
//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
|
|
//
|
|
// Compute the interprocedural closure of a data structure graph
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
|
|
//#define DEBUG_IP_CLOSURE 1
|
|
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/iOther.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
#ifdef DEBUG_IP_CLOSURE
|
|
#include "llvm/Assembly/Writer.h"
|
|
#endif
|
|
|
|
// copyEdgesFromTo - Make a copy of all of the edges to Node to also point
|
|
// PV. If there are edges out of Node, the edges are added to the subgraph
|
|
// starting at PV.
|
|
//
|
|
static void copyEdgesFromTo(DSNode *Node, const PointerValSet &PVS) {
|
|
// Make all of the pointers that pointed to Node now also point to PV...
|
|
const vector<PointerValSet*> &PVSToUpdate(Node->getReferrers());
|
|
for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
|
|
for (unsigned pn = 0, pne = PVS.size(); pn != pne; ++pn)
|
|
PVSToUpdate[i]->add(PVS[pn]);
|
|
}
|
|
|
|
static void CalculateNodeMapping(ShadowDSNode *Shadow, DSNode *Node,
|
|
multimap<ShadowDSNode *, DSNode *> &NodeMapping) {
|
|
#ifdef DEBUG_IP_CLOSURE
|
|
cerr << "Mapping " << (void*)Shadow << " to " << (void*)Node << "\n";
|
|
cerr << "Type = '" << Shadow->getType() << "' and '"
|
|
<< Node->getType() << "'\n";
|
|
cerr << "Shadow Node:\n";
|
|
Shadow->print(cerr);
|
|
cerr << "\nMapped Node:\n";
|
|
Node->print(cerr);
|
|
#endif
|
|
assert(Shadow->getType() == Node->getType() &&
|
|
"Shadow and mapped nodes disagree about type!");
|
|
|
|
multimap<ShadowDSNode *, DSNode *>::iterator
|
|
NI = NodeMapping.lower_bound(Shadow),
|
|
NE = NodeMapping.upper_bound(Shadow);
|
|
|
|
for (; NI != NE; ++NI)
|
|
if (NI->second == Node) return; // Already processed node, return.
|
|
|
|
NodeMapping.insert(make_pair(Shadow, Node)); // Add a mapping...
|
|
|
|
// Loop over all of the outgoing links in the shadow node...
|
|
//
|
|
assert(Node->getNumLinks() == Shadow->getNumLinks() &&
|
|
"Same type, but different number of links?");
|
|
for (unsigned i = 0, e = Shadow->getNumLinks(); i != e; ++i) {
|
|
PointerValSet &Link = Shadow->getLink(i);
|
|
|
|
// Loop over all of the values coming out of this pointer...
|
|
for (unsigned l = 0, le = Link.size(); l != le; ++l) {
|
|
// If the outgoing node points to a shadow node, map the shadow node to
|
|
// all of the outgoing values in Node.
|
|
//
|
|
if (ShadowDSNode *ShadOut = dyn_cast<ShadowDSNode>(Link[l].Node)) {
|
|
PointerValSet &NLink = Node->getLink(i);
|
|
for (unsigned ol = 0, ole = NLink.size(); ol != ole; ++ol)
|
|
CalculateNodeMapping(ShadOut, NLink[ol].Node, NodeMapping);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void ResolveNodesTo(const PointerVal &FromPtr,
|
|
const PointerValSet &ToVals) {
|
|
assert(FromPtr.Index == 0 &&
|
|
"Resolved node return pointer should be index 0!");
|
|
if (!isa<ShadowDSNode>(FromPtr.Node)) return;
|
|
|
|
ShadowDSNode *Shadow = cast<ShadowDSNode>(FromPtr.Node);
|
|
Shadow->resetCriticalMark();
|
|
|
|
typedef multimap<ShadowDSNode *, DSNode *> ShadNodeMapTy;
|
|
ShadNodeMapTy NodeMapping;
|
|
for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
|
|
CalculateNodeMapping(Shadow, ToVals[i].Node, NodeMapping);
|
|
|
|
// Now loop through the shadow node graph, mirroring the edges in the shadow
|
|
// graph onto the realized graph...
|
|
//
|
|
for (ShadNodeMapTy::iterator I = NodeMapping.begin(),
|
|
E = NodeMapping.end(); I != E; ++I) {
|
|
DSNode *Node = I->second;
|
|
ShadowDSNode *ShadNode = I->first;
|
|
PointerValSet PVSx;
|
|
PVSx.add(Node);
|
|
copyEdgesFromTo(ShadNode, PVSx);
|
|
|
|
// Must loop over edges in the shadow graph, adding edges in the real graph
|
|
// that correspond to to the edges, but are mapped into real values by the
|
|
// NodeMapping.
|
|
//
|
|
for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) {
|
|
const PointerValSet &ShadLinks = ShadNode->getLink(i);
|
|
PointerValSet &NewLinks = Node->getLink(i);
|
|
|
|
// Add a link to all of the nodes pointed to by the shadow field...
|
|
for (unsigned l = 0, le = ShadLinks.size(); l != le; ++l) {
|
|
DSNode *ShadLink = ShadLinks[l].Node;
|
|
|
|
if (ShadowDSNode *SL = dyn_cast<ShadowDSNode>(ShadLink)) {
|
|
// Loop over all of the values in the range
|
|
ShadNodeMapTy::iterator St = NodeMapping.lower_bound(SL),
|
|
En = NodeMapping.upper_bound(SL);
|
|
if (St != En) {
|
|
for (; St != En; ++St)
|
|
NewLinks.add(PointerVal(St->second, ShadLinks[l].Index));
|
|
} else {
|
|
// We must retain the shadow node...
|
|
NewLinks.add(ShadLinks[l]);
|
|
}
|
|
} else {
|
|
// Otherwise, add a direct link to the data structure pointed to by
|
|
// the shadow node...
|
|
NewLinks.add(ShadLinks[l]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ResolveNodeTo - The specified node is now known to point to the set of values
|
|
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
|
|
//
|
|
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
|
|
assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
|
|
|
|
PointerValSet PVS = Node->getLink(0);
|
|
|
|
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
|
ResolveNodesTo(PVS[i], ToVals);
|
|
}
|
|
|
|
// isResolvableCallNode - Return true if node is a call node and it is a call
|
|
// node that we can inline...
|
|
//
|
|
static bool isResolvableCallNode(DSNode *N) {
|
|
// Only operate on call nodes...
|
|
CallDSNode *CN = dyn_cast<CallDSNode>(N);
|
|
if (CN == 0) return false;
|
|
|
|
// Only operate on call nodes with direct method calls
|
|
Function *F = CN->getCall()->getCalledFunction();
|
|
if (F == 0) return false;
|
|
|
|
// Only work on call nodes with direct calls to methods with bodies.
|
|
return !F->isExternal();
|
|
}
|
|
|
|
|
|
// computeClosure - Replace all of the resolvable call nodes with the contents
|
|
// of their corresponding method data structure graph...
|
|
//
|
|
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
|
|
vector<DSNode*>::iterator NI = std::find_if(Nodes.begin(), Nodes.end(),
|
|
isResolvableCallNode);
|
|
|
|
map<Function*, unsigned> InlineCount; // FIXME
|
|
|
|
// Loop over the resolvable call nodes...
|
|
while (NI != Nodes.end()) {
|
|
CallDSNode *CN = cast<CallDSNode>(*NI);
|
|
Function *F = CN->getCall()->getCalledFunction();
|
|
//if (F == Func) return; // Do not do self inlining
|
|
|
|
// FIXME: Gross hack to prevent explosions when inlining a recursive func.
|
|
if (InlineCount[F]++ > 2) return;
|
|
|
|
Nodes.erase(NI); // Remove the call node from the graph
|
|
|
|
unsigned CallNodeOffset = NI-Nodes.begin();
|
|
|
|
// StartNode - The first node of the incorporated graph, last node of the
|
|
// preexisting data structure graph...
|
|
//
|
|
unsigned StartNode = Nodes.size();
|
|
|
|
// Hold the set of values that correspond to the incorporated methods
|
|
// return set.
|
|
//
|
|
PointerValSet RetVals;
|
|
|
|
if (F != Func) { // If this is not a recursive call...
|
|
// Get the datastructure graph for the new method. Note that we are not
|
|
// allowed to modify this graph because it will be the cached graph that
|
|
// is returned by other users that want the local datastructure graph for
|
|
// a method.
|
|
//
|
|
const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
|
|
|
|
unsigned StartShadowNodes = ShadowNodes.size();
|
|
|
|
// Incorporate a copy of the called function graph into the current graph,
|
|
// allowing us to do local transformations to local graph to link
|
|
// arguments to call values, and call node to return value...
|
|
//
|
|
RetVals = cloneFunctionIntoSelf(NewFunction, false);
|
|
|
|
// Only detail is that we need to reset all of the critical shadow nodes
|
|
// in the incorporated graph, because they are now no longer critical.
|
|
//
|
|
for (unsigned i = StartShadowNodes, e = ShadowNodes.size(); i != e; ++i)
|
|
ShadowNodes[i]->resetCriticalMark();
|
|
|
|
} else { // We are looking at a recursive function!
|
|
StartNode = 0; // Arg nodes start at 0 now...
|
|
RetVals = RetNode;
|
|
}
|
|
|
|
// If the function returns a pointer value... Resolve values pointing to
|
|
// the shadow nodes pointed to by CN to now point the values in RetVals...
|
|
//
|
|
if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
|
|
|
|
// If the call node has arguments, process them now!
|
|
if (CN->getNumArgs()) {
|
|
// The ArgNodes of the incorporated graph should be the nodes starting at
|
|
// StartNode, ordered the same way as the call arguments. The arg nodes
|
|
// are seperated by a single shadow node, but that shadow node might get
|
|
// eliminated in the process of optimization.
|
|
//
|
|
unsigned ArgOffset = StartNode;
|
|
for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) {
|
|
// Get the arg node of the incorporated method...
|
|
while (!isa<ArgDSNode>(Nodes[ArgOffset])) // Scan for next arg node
|
|
ArgOffset++;
|
|
ArgDSNode *ArgNode = cast<ArgDSNode>(Nodes[ArgOffset]);
|
|
|
|
// Now we make all of the nodes inside of the incorporated method point
|
|
// to the real arguments values, not to the shadow nodes for the
|
|
// argument.
|
|
//
|
|
ResolveNodeTo(ArgNode, CN->getArgValues(i));
|
|
|
|
if (StartNode) { // Not Self recursion?
|
|
// Remove the argnode from the set of nodes in this method...
|
|
Nodes.erase(Nodes.begin()+ArgOffset);
|
|
|
|
// ArgNode is no longer useful, delete now!
|
|
delete ArgNode;
|
|
} else {
|
|
ArgOffset++; // Step to the next argument...
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop through the nodes, deleting alloc nodes in the inlined function...
|
|
// Since the memory has been released, we cannot access their pointer
|
|
// fields (with defined results at least), so it is not possible to use any
|
|
// pointers to the alloca. Drop them now, and remove the alloca's since
|
|
// they are dead (we just removed all links to them). Only do this if we
|
|
// are not self recursing though. :)
|
|
//
|
|
if (StartNode) // Don't do this if self recursing...
|
|
for (unsigned i = StartNode; i != Nodes.size(); ++i)
|
|
if (NewDSNode *NDS = dyn_cast<NewDSNode>(Nodes[i]))
|
|
if (NDS->isAllocaNode()) {
|
|
NDS->removeAllIncomingEdges(); // These edges are invalid now!
|
|
delete NDS; // Node is dead
|
|
Nodes.erase(Nodes.begin()+i); // Remove slot in Nodes array
|
|
--i; // Don't skip the next node
|
|
}
|
|
|
|
|
|
// Now the call node is completely destructable. Eliminate it now.
|
|
delete CN;
|
|
|
|
bool Changed = true;
|
|
while (Changed) {
|
|
// Eliminate shadow nodes that are not distinguishable from some other
|
|
// node in the graph...
|
|
//
|
|
Changed = UnlinkUndistinguishableShadowNodes();
|
|
|
|
// Eliminate shadow nodes that are now extraneous due to linking...
|
|
Changed |= RemoveUnreachableShadowNodes();
|
|
}
|
|
|
|
//if (F == Func) return; // Only do one self inlining
|
|
|
|
// Move on to the next call node...
|
|
NI = std::find_if(Nodes.begin(), Nodes.end(), isResolvableCallNode);
|
|
}
|
|
}
|