llvm-6502/lib/CodeGen/TargetLoweringBase.cpp
Tom Stellard da25cd3e6d SelectionDAG: Use correct pointer size when lowering function arguments v2
This adds minimal support to the SelectionDAG for handling address spaces
with different pointer sizes.  The SelectionDAG should now correctly
lower pointer function arguments to the correct size as well as generate
the correct code when lowering getelementptr.

This patch also updates the R600 DataLayout to use 32-bit pointers for
the local address space.

v2:
  - Add more helper functions to TargetLoweringBase
  - Use CHECK-LABEL for tests

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189221 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-26 15:05:36 +00:00

1343 lines
50 KiB
C++

//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLoweringBase class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cctype>
using namespace llvm;
/// InitLibcallNames - Set default libcall names.
///
static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
Names[RTLIB::SHL_I16] = "__ashlhi3";
Names[RTLIB::SHL_I32] = "__ashlsi3";
Names[RTLIB::SHL_I64] = "__ashldi3";
Names[RTLIB::SHL_I128] = "__ashlti3";
Names[RTLIB::SRL_I16] = "__lshrhi3";
Names[RTLIB::SRL_I32] = "__lshrsi3";
Names[RTLIB::SRL_I64] = "__lshrdi3";
Names[RTLIB::SRL_I128] = "__lshrti3";
Names[RTLIB::SRA_I16] = "__ashrhi3";
Names[RTLIB::SRA_I32] = "__ashrsi3";
Names[RTLIB::SRA_I64] = "__ashrdi3";
Names[RTLIB::SRA_I128] = "__ashrti3";
Names[RTLIB::MUL_I8] = "__mulqi3";
Names[RTLIB::MUL_I16] = "__mulhi3";
Names[RTLIB::MUL_I32] = "__mulsi3";
Names[RTLIB::MUL_I64] = "__muldi3";
Names[RTLIB::MUL_I128] = "__multi3";
Names[RTLIB::MULO_I32] = "__mulosi4";
Names[RTLIB::MULO_I64] = "__mulodi4";
Names[RTLIB::MULO_I128] = "__muloti4";
Names[RTLIB::SDIV_I8] = "__divqi3";
Names[RTLIB::SDIV_I16] = "__divhi3";
Names[RTLIB::SDIV_I32] = "__divsi3";
Names[RTLIB::SDIV_I64] = "__divdi3";
Names[RTLIB::SDIV_I128] = "__divti3";
Names[RTLIB::UDIV_I8] = "__udivqi3";
Names[RTLIB::UDIV_I16] = "__udivhi3";
Names[RTLIB::UDIV_I32] = "__udivsi3";
Names[RTLIB::UDIV_I64] = "__udivdi3";
Names[RTLIB::UDIV_I128] = "__udivti3";
Names[RTLIB::SREM_I8] = "__modqi3";
Names[RTLIB::SREM_I16] = "__modhi3";
Names[RTLIB::SREM_I32] = "__modsi3";
Names[RTLIB::SREM_I64] = "__moddi3";
Names[RTLIB::SREM_I128] = "__modti3";
Names[RTLIB::UREM_I8] = "__umodqi3";
Names[RTLIB::UREM_I16] = "__umodhi3";
Names[RTLIB::UREM_I32] = "__umodsi3";
Names[RTLIB::UREM_I64] = "__umoddi3";
Names[RTLIB::UREM_I128] = "__umodti3";
// These are generally not available.
Names[RTLIB::SDIVREM_I8] = 0;
Names[RTLIB::SDIVREM_I16] = 0;
Names[RTLIB::SDIVREM_I32] = 0;
Names[RTLIB::SDIVREM_I64] = 0;
Names[RTLIB::SDIVREM_I128] = 0;
Names[RTLIB::UDIVREM_I8] = 0;
Names[RTLIB::UDIVREM_I16] = 0;
Names[RTLIB::UDIVREM_I32] = 0;
Names[RTLIB::UDIVREM_I64] = 0;
Names[RTLIB::UDIVREM_I128] = 0;
Names[RTLIB::NEG_I32] = "__negsi2";
Names[RTLIB::NEG_I64] = "__negdi2";
Names[RTLIB::ADD_F32] = "__addsf3";
Names[RTLIB::ADD_F64] = "__adddf3";
Names[RTLIB::ADD_F80] = "__addxf3";
Names[RTLIB::ADD_F128] = "__addtf3";
Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Names[RTLIB::SUB_F32] = "__subsf3";
Names[RTLIB::SUB_F64] = "__subdf3";
Names[RTLIB::SUB_F80] = "__subxf3";
Names[RTLIB::SUB_F128] = "__subtf3";
Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Names[RTLIB::MUL_F32] = "__mulsf3";
Names[RTLIB::MUL_F64] = "__muldf3";
Names[RTLIB::MUL_F80] = "__mulxf3";
Names[RTLIB::MUL_F128] = "__multf3";
Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Names[RTLIB::DIV_F32] = "__divsf3";
Names[RTLIB::DIV_F64] = "__divdf3";
Names[RTLIB::DIV_F80] = "__divxf3";
Names[RTLIB::DIV_F128] = "__divtf3";
Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Names[RTLIB::REM_F32] = "fmodf";
Names[RTLIB::REM_F64] = "fmod";
Names[RTLIB::REM_F80] = "fmodl";
Names[RTLIB::REM_F128] = "fmodl";
Names[RTLIB::REM_PPCF128] = "fmodl";
Names[RTLIB::FMA_F32] = "fmaf";
Names[RTLIB::FMA_F64] = "fma";
Names[RTLIB::FMA_F80] = "fmal";
Names[RTLIB::FMA_F128] = "fmal";
Names[RTLIB::FMA_PPCF128] = "fmal";
Names[RTLIB::POWI_F32] = "__powisf2";
Names[RTLIB::POWI_F64] = "__powidf2";
Names[RTLIB::POWI_F80] = "__powixf2";
Names[RTLIB::POWI_F128] = "__powitf2";
Names[RTLIB::POWI_PPCF128] = "__powitf2";
Names[RTLIB::SQRT_F32] = "sqrtf";
Names[RTLIB::SQRT_F64] = "sqrt";
Names[RTLIB::SQRT_F80] = "sqrtl";
Names[RTLIB::SQRT_F128] = "sqrtl";
Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Names[RTLIB::LOG_F32] = "logf";
Names[RTLIB::LOG_F64] = "log";
Names[RTLIB::LOG_F80] = "logl";
Names[RTLIB::LOG_F128] = "logl";
Names[RTLIB::LOG_PPCF128] = "logl";
Names[RTLIB::LOG2_F32] = "log2f";
Names[RTLIB::LOG2_F64] = "log2";
Names[RTLIB::LOG2_F80] = "log2l";
Names[RTLIB::LOG2_F128] = "log2l";
Names[RTLIB::LOG2_PPCF128] = "log2l";
Names[RTLIB::LOG10_F32] = "log10f";
Names[RTLIB::LOG10_F64] = "log10";
Names[RTLIB::LOG10_F80] = "log10l";
Names[RTLIB::LOG10_F128] = "log10l";
Names[RTLIB::LOG10_PPCF128] = "log10l";
Names[RTLIB::EXP_F32] = "expf";
Names[RTLIB::EXP_F64] = "exp";
Names[RTLIB::EXP_F80] = "expl";
Names[RTLIB::EXP_F128] = "expl";
Names[RTLIB::EXP_PPCF128] = "expl";
Names[RTLIB::EXP2_F32] = "exp2f";
Names[RTLIB::EXP2_F64] = "exp2";
Names[RTLIB::EXP2_F80] = "exp2l";
Names[RTLIB::EXP2_F128] = "exp2l";
Names[RTLIB::EXP2_PPCF128] = "exp2l";
Names[RTLIB::SIN_F32] = "sinf";
Names[RTLIB::SIN_F64] = "sin";
Names[RTLIB::SIN_F80] = "sinl";
Names[RTLIB::SIN_F128] = "sinl";
Names[RTLIB::SIN_PPCF128] = "sinl";
Names[RTLIB::COS_F32] = "cosf";
Names[RTLIB::COS_F64] = "cos";
Names[RTLIB::COS_F80] = "cosl";
Names[RTLIB::COS_F128] = "cosl";
Names[RTLIB::COS_PPCF128] = "cosl";
Names[RTLIB::POW_F32] = "powf";
Names[RTLIB::POW_F64] = "pow";
Names[RTLIB::POW_F80] = "powl";
Names[RTLIB::POW_F128] = "powl";
Names[RTLIB::POW_PPCF128] = "powl";
Names[RTLIB::CEIL_F32] = "ceilf";
Names[RTLIB::CEIL_F64] = "ceil";
Names[RTLIB::CEIL_F80] = "ceill";
Names[RTLIB::CEIL_F128] = "ceill";
Names[RTLIB::CEIL_PPCF128] = "ceill";
Names[RTLIB::TRUNC_F32] = "truncf";
Names[RTLIB::TRUNC_F64] = "trunc";
Names[RTLIB::TRUNC_F80] = "truncl";
Names[RTLIB::TRUNC_F128] = "truncl";
Names[RTLIB::TRUNC_PPCF128] = "truncl";
Names[RTLIB::RINT_F32] = "rintf";
Names[RTLIB::RINT_F64] = "rint";
Names[RTLIB::RINT_F80] = "rintl";
Names[RTLIB::RINT_F128] = "rintl";
Names[RTLIB::RINT_PPCF128] = "rintl";
Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
Names[RTLIB::NEARBYINT_F64] = "nearbyint";
Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
Names[RTLIB::ROUND_F32] = "roundf";
Names[RTLIB::ROUND_F64] = "round";
Names[RTLIB::ROUND_F80] = "roundl";
Names[RTLIB::ROUND_F128] = "roundl";
Names[RTLIB::ROUND_PPCF128] = "roundl";
Names[RTLIB::FLOOR_F32] = "floorf";
Names[RTLIB::FLOOR_F64] = "floor";
Names[RTLIB::FLOOR_F80] = "floorl";
Names[RTLIB::FLOOR_F128] = "floorl";
Names[RTLIB::FLOOR_PPCF128] = "floorl";
Names[RTLIB::COPYSIGN_F32] = "copysignf";
Names[RTLIB::COPYSIGN_F64] = "copysign";
Names[RTLIB::COPYSIGN_F80] = "copysignl";
Names[RTLIB::COPYSIGN_F128] = "copysignl";
Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
Names[RTLIB::OEQ_F32] = "__eqsf2";
Names[RTLIB::OEQ_F64] = "__eqdf2";
Names[RTLIB::OEQ_F128] = "__eqtf2";
Names[RTLIB::UNE_F32] = "__nesf2";
Names[RTLIB::UNE_F64] = "__nedf2";
Names[RTLIB::UNE_F128] = "__netf2";
Names[RTLIB::OGE_F32] = "__gesf2";
Names[RTLIB::OGE_F64] = "__gedf2";
Names[RTLIB::OGE_F128] = "__getf2";
Names[RTLIB::OLT_F32] = "__ltsf2";
Names[RTLIB::OLT_F64] = "__ltdf2";
Names[RTLIB::OLT_F128] = "__lttf2";
Names[RTLIB::OLE_F32] = "__lesf2";
Names[RTLIB::OLE_F64] = "__ledf2";
Names[RTLIB::OLE_F128] = "__letf2";
Names[RTLIB::OGT_F32] = "__gtsf2";
Names[RTLIB::OGT_F64] = "__gtdf2";
Names[RTLIB::OGT_F128] = "__gttf2";
Names[RTLIB::UO_F32] = "__unordsf2";
Names[RTLIB::UO_F64] = "__unorddf2";
Names[RTLIB::UO_F128] = "__unordtf2";
Names[RTLIB::O_F32] = "__unordsf2";
Names[RTLIB::O_F64] = "__unorddf2";
Names[RTLIB::O_F128] = "__unordtf2";
Names[RTLIB::MEMCPY] = "memcpy";
Names[RTLIB::MEMMOVE] = "memmove";
Names[RTLIB::MEMSET] = "memset";
Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
Names[RTLIB::SINCOS_F32] = "sincosf";
Names[RTLIB::SINCOS_F64] = "sincos";
Names[RTLIB::SINCOS_F80] = "sincosl";
Names[RTLIB::SINCOS_F128] = "sincosl";
Names[RTLIB::SINCOS_PPCF128] = "sincosl";
} else {
// These are generally not available.
Names[RTLIB::SINCOS_F32] = 0;
Names[RTLIB::SINCOS_F64] = 0;
Names[RTLIB::SINCOS_F80] = 0;
Names[RTLIB::SINCOS_F128] = 0;
Names[RTLIB::SINCOS_PPCF128] = 0;
}
if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) {
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
} else {
// These are generally not available.
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0;
}
}
/// InitLibcallCallingConvs - Set default libcall CallingConvs.
///
static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
CCs[i] = CallingConv::C;
}
}
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::f64)
return FPEXT_F32_F64;
if (RetVT == MVT::f128)
return FPEXT_F32_F128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::f128)
return FPEXT_F64_F128;
}
return UNKNOWN_LIBCALL;
}
/// getFPROUND - Return the FPROUND_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
if (RetVT == MVT::f32) {
if (OpVT == MVT::f64)
return FPROUND_F64_F32;
if (OpVT == MVT::f80)
return FPROUND_F80_F32;
if (OpVT == MVT::f128)
return FPROUND_F128_F32;
if (OpVT == MVT::ppcf128)
return FPROUND_PPCF128_F32;
} else if (RetVT == MVT::f64) {
if (OpVT == MVT::f80)
return FPROUND_F80_F64;
if (OpVT == MVT::f128)
return FPROUND_F128_F64;
if (OpVT == MVT::ppcf128)
return FPROUND_PPCF128_F64;
}
return UNKNOWN_LIBCALL;
}
/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i8)
return FPTOSINT_F32_I8;
if (RetVT == MVT::i16)
return FPTOSINT_F32_I16;
if (RetVT == MVT::i32)
return FPTOSINT_F32_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F32_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F32_I128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::i8)
return FPTOSINT_F64_I8;
if (RetVT == MVT::i16)
return FPTOSINT_F64_I16;
if (RetVT == MVT::i32)
return FPTOSINT_F64_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F64_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F64_I128;
} else if (OpVT == MVT::f80) {
if (RetVT == MVT::i32)
return FPTOSINT_F80_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F80_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F80_I128;
} else if (OpVT == MVT::f128) {
if (RetVT == MVT::i32)
return FPTOSINT_F128_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F128_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F128_I128;
} else if (OpVT == MVT::ppcf128) {
if (RetVT == MVT::i32)
return FPTOSINT_PPCF128_I32;
if (RetVT == MVT::i64)
return FPTOSINT_PPCF128_I64;
if (RetVT == MVT::i128)
return FPTOSINT_PPCF128_I128;
}
return UNKNOWN_LIBCALL;
}
/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i8)
return FPTOUINT_F32_I8;
if (RetVT == MVT::i16)
return FPTOUINT_F32_I16;
if (RetVT == MVT::i32)
return FPTOUINT_F32_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F32_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F32_I128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::i8)
return FPTOUINT_F64_I8;
if (RetVT == MVT::i16)
return FPTOUINT_F64_I16;
if (RetVT == MVT::i32)
return FPTOUINT_F64_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F64_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F64_I128;
} else if (OpVT == MVT::f80) {
if (RetVT == MVT::i32)
return FPTOUINT_F80_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F80_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F80_I128;
} else if (OpVT == MVT::f128) {
if (RetVT == MVT::i32)
return FPTOUINT_F128_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F128_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F128_I128;
} else if (OpVT == MVT::ppcf128) {
if (RetVT == MVT::i32)
return FPTOUINT_PPCF128_I32;
if (RetVT == MVT::i64)
return FPTOUINT_PPCF128_I64;
if (RetVT == MVT::i128)
return FPTOUINT_PPCF128_I128;
}
return UNKNOWN_LIBCALL;
}
/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return SINTTOFP_I32_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I32_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I32_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I32_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I32_PPCF128;
} else if (OpVT == MVT::i64) {
if (RetVT == MVT::f32)
return SINTTOFP_I64_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I64_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I64_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I64_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I64_PPCF128;
} else if (OpVT == MVT::i128) {
if (RetVT == MVT::f32)
return SINTTOFP_I128_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I128_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I128_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I128_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I128_PPCF128;
}
return UNKNOWN_LIBCALL;
}
/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return UINTTOFP_I32_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I32_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I32_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I32_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I32_PPCF128;
} else if (OpVT == MVT::i64) {
if (RetVT == MVT::f32)
return UINTTOFP_I64_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I64_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I64_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I64_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I64_PPCF128;
} else if (OpVT == MVT::i128) {
if (RetVT == MVT::f32)
return UINTTOFP_I128_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I128_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I128_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I128_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I128_PPCF128;
}
return UNKNOWN_LIBCALL;
}
/// InitCmpLibcallCCs - Set default comparison libcall CC.
///
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
CCs[RTLIB::UNE_F32] = ISD::SETNE;
CCs[RTLIB::UNE_F64] = ISD::SETNE;
CCs[RTLIB::UNE_F128] = ISD::SETNE;
CCs[RTLIB::OGE_F32] = ISD::SETGE;
CCs[RTLIB::OGE_F64] = ISD::SETGE;
CCs[RTLIB::OGE_F128] = ISD::SETGE;
CCs[RTLIB::OLT_F32] = ISD::SETLT;
CCs[RTLIB::OLT_F64] = ISD::SETLT;
CCs[RTLIB::OLT_F128] = ISD::SETLT;
CCs[RTLIB::OLE_F32] = ISD::SETLE;
CCs[RTLIB::OLE_F64] = ISD::SETLE;
CCs[RTLIB::OLE_F128] = ISD::SETLE;
CCs[RTLIB::OGT_F32] = ISD::SETGT;
CCs[RTLIB::OGT_F64] = ISD::SETGT;
CCs[RTLIB::OGT_F128] = ISD::SETGT;
CCs[RTLIB::UO_F32] = ISD::SETNE;
CCs[RTLIB::UO_F64] = ISD::SETNE;
CCs[RTLIB::UO_F128] = ISD::SETNE;
CCs[RTLIB::O_F32] = ISD::SETEQ;
CCs[RTLIB::O_F64] = ISD::SETEQ;
CCs[RTLIB::O_F128] = ISD::SETEQ;
}
/// NOTE: The constructor takes ownership of TLOF.
TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
const TargetLoweringObjectFile *tlof)
: TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
initActions();
// Perform these initializations only once.
IsLittleEndian = TD->isLittleEndian();
PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
= MaxStoresPerMemmoveOptSize = 4;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
SelectIsExpensive = false;
IntDivIsCheap = false;
Pow2DivIsCheap = false;
JumpIsExpensive = false;
PredictableSelectIsExpensive = false;
StackPointerRegisterToSaveRestore = 0;
ExceptionPointerRegister = 0;
ExceptionSelectorRegister = 0;
BooleanContents = UndefinedBooleanContent;
BooleanVectorContents = UndefinedBooleanContent;
SchedPreferenceInfo = Sched::ILP;
JumpBufSize = 0;
JumpBufAlignment = 0;
MinFunctionAlignment = 0;
PrefFunctionAlignment = 0;
PrefLoopAlignment = 0;
MinStackArgumentAlignment = 1;
InsertFencesForAtomic = false;
SupportJumpTables = true;
MinimumJumpTableEntries = 4;
InitLibcallNames(LibcallRoutineNames, TM);
InitCmpLibcallCCs(CmpLibcallCCs);
InitLibcallCallingConvs(LibcallCallingConvs);
}
TargetLoweringBase::~TargetLoweringBase() {
delete &TLOF;
}
void TargetLoweringBase::initActions() {
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
memset(LoadExtActions, 0, sizeof(LoadExtActions));
memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
memset(CondCodeActions, 0, sizeof(CondCodeActions));
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
// Set default actions for various operations.
for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
// Default all indexed load / store to expand.
for (unsigned IM = (unsigned)ISD::PRE_INC;
IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
}
// These operations default to expand.
setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
// These library functions default to expand.
setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
// These operations default to expand for vector types.
if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
VT <= MVT::LAST_VECTOR_VALUETYPE)
setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
}
// Most targets ignore the @llvm.prefetch intrinsic.
setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
// ConstantFP nodes default to expand. Targets can either change this to
// Legal, in which case all fp constants are legal, or use isFPImmLegal()
// to optimize expansions for certain constants.
setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
// These library functions default to expand.
setOperationAction(ISD::FLOG , MVT::f16, Expand);
setOperationAction(ISD::FLOG2, MVT::f16, Expand);
setOperationAction(ISD::FLOG10, MVT::f16, Expand);
setOperationAction(ISD::FEXP , MVT::f16, Expand);
setOperationAction(ISD::FEXP2, MVT::f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
setOperationAction(ISD::FCEIL, MVT::f16, Expand);
setOperationAction(ISD::FRINT, MVT::f16, Expand);
setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
setOperationAction(ISD::FLOG , MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FEXP , MVT::f32, Expand);
setOperationAction(ISD::FEXP2, MVT::f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
setOperationAction(ISD::FCEIL, MVT::f32, Expand);
setOperationAction(ISD::FRINT, MVT::f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
setOperationAction(ISD::FLOG , MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FEXP , MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
setOperationAction(ISD::FRINT, MVT::f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
setOperationAction(ISD::FLOG , MVT::f128, Expand);
setOperationAction(ISD::FLOG2, MVT::f128, Expand);
setOperationAction(ISD::FLOG10, MVT::f128, Expand);
setOperationAction(ISD::FEXP , MVT::f128, Expand);
setOperationAction(ISD::FEXP2, MVT::f128, Expand);
setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
setOperationAction(ISD::FCEIL, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
// Default ISD::TRAP to expand (which turns it into abort).
setOperationAction(ISD::TRAP, MVT::Other, Expand);
// On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
// here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
//
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
}
MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
return MVT::getIntegerVT(getPointerSizeInBits(AS));
}
unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
return TD->getPointerSizeInBits(AS);
}
unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
assert(Ty->isPointerTy());
return getPointerSizeInBits(Ty->getPointerAddressSpace());
}
MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
return MVT::getIntegerVT(8*TD->getPointerSize(0));
}
EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
if (LHSTy.isVector())
return LHSTy;
return getScalarShiftAmountTy(LHSTy);
}
/// canOpTrap - Returns true if the operation can trap for the value type.
/// VT must be a legal type.
bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
assert(isTypeLegal(VT));
switch (Op) {
default:
return false;
case ISD::FDIV:
case ISD::FREM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
return true;
}
}
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT,
TargetLoweringBase *TLI) {
// Figure out the right, legal destination reg to copy into.
unsigned NumElts = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType();
unsigned NumVectorRegs = 1;
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
NumIntermediates = NumVectorRegs;
MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
if (!TLI->isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
unsigned NewVTSize = NewVT.getSizeInBits();
// Convert sizes such as i33 to i64.
if (!isPowerOf2_32(NewVTSize))
NewVTSize = NextPowerOf2(NewVTSize);
MVT DestVT = TLI->getRegisterType(NewVT);
RegisterVT = DestVT;
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
}
/// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
I != E; ++I) {
if (isTypeLegal(*I))
return true;
}
return false;
}
/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
std::pair<const TargetRegisterClass*, uint8_t>
TargetLoweringBase::findRepresentativeClass(MVT VT) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
if (!RC)
return std::make_pair(RC, 0);
// Compute the set of all super-register classes.
BitVector SuperRegRC(TRI->getNumRegClasses());
for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
SuperRegRC.setBitsInMask(RCI.getMask());
// Find the first legal register class with the largest spill size.
const TargetRegisterClass *BestRC = RC;
for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
// We want the largest possible spill size.
if (SuperRC->getSize() <= BestRC->getSize())
continue;
if (!isLegalRC(SuperRC))
continue;
BestRC = SuperRC;
}
return std::make_pair(BestRC, 1);
}
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLoweringBase::computeRegisterProperties() {
assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
"Too many value types for ValueTypeActions to hold!");
// Everything defaults to needing one register.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
NumRegistersForVT[i] = 1;
RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
}
// ...except isVoid, which doesn't need any registers.
NumRegistersForVT[MVT::isVoid] = 0;
// Find the largest integer register class.
unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
// Every integer value type larger than this largest register takes twice as
// many registers to represent as the previous ValueType.
for (unsigned ExpandedReg = LargestIntReg + 1;
ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
TypeExpandInteger);
}
// Inspect all of the ValueType's smaller than the largest integer
// register to see which ones need promotion.
unsigned LegalIntReg = LargestIntReg;
for (unsigned IntReg = LargestIntReg - 1;
IntReg >= (unsigned)MVT::i1; --IntReg) {
MVT IVT = (MVT::SimpleValueType)IntReg;
if (isTypeLegal(IVT)) {
LegalIntReg = IntReg;
} else {
RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
(const MVT::SimpleValueType)LegalIntReg;
ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
}
}
// ppcf128 type is really two f64's.
if (!isTypeLegal(MVT::ppcf128)) {
NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
TransformToType[MVT::ppcf128] = MVT::f64;
ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
}
// Decide how to handle f128. If the target does not have native f128 support,
// expand it to i128 and we will be generating soft float library calls.
if (!isTypeLegal(MVT::f128)) {
NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
TransformToType[MVT::f128] = MVT::i128;
ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
}
// Decide how to handle f64. If the target does not have native f64 support,
// expand it to i64 and we will be generating soft float library calls.
if (!isTypeLegal(MVT::f64)) {
NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
TransformToType[MVT::f64] = MVT::i64;
ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
}
// Decide how to handle f32. If the target does not have native support for
// f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
if (!isTypeLegal(MVT::f32)) {
if (isTypeLegal(MVT::f64)) {
NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
TransformToType[MVT::f32] = MVT::f64;
ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
} else {
NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
TransformToType[MVT::f32] = MVT::i32;
ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
}
}
// Loop over all of the vector value types to see which need transformations.
for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT VT = (MVT::SimpleValueType)i;
if (isTypeLegal(VT)) continue;
// Determine if there is a legal wider type. If so, we should promote to
// that wider vector type.
MVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
bool IsLegalWiderType = false;
// First try to promote the elements of integer vectors. If no legal
// promotion was found, fallback to the widen-vector method.
for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType)nVT;
// Promote vectors of integers to vectors with the same number
// of elements, with a wider element type.
if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
&& SVT.getVectorNumElements() == NElts &&
isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
NumRegistersForVT[i] = 1;
ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
IsLegalWiderType = true;
break;
}
}
if (IsLegalWiderType) continue;
// Try to widen the vector.
for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType)nVT;
if (SVT.getVectorElementType() == EltVT &&
SVT.getVectorNumElements() > NElts &&
isTypeLegal(SVT)) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
NumRegistersForVT[i] = 1;
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
IsLegalWiderType = true;
break;
}
}
if (IsLegalWiderType) continue;
}
MVT IntermediateVT;
MVT RegisterVT;
unsigned NumIntermediates;
NumRegistersForVT[i] =
getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
RegisterVT, this);
RegisterTypeForVT[i] = RegisterVT;
MVT NVT = VT.getPow2VectorType();
if (NVT == VT) {
// Type is already a power of 2. The default action is to split.
TransformToType[i] = MVT::Other;
unsigned NumElts = VT.getVectorNumElements();
ValueTypeActions.setTypeAction(VT,
NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
} else {
TransformToType[i] = NVT;
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
}
}
// Determine the 'representative' register class for each value type.
// An representative register class is the largest (meaning one which is
// not a sub-register class / subreg register class) legal register class for
// a group of value types. For example, on i386, i8, i16, and i32
// representative would be GR32; while on x86_64 it's GR64.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
const TargetRegisterClass* RRC;
uint8_t Cost;
tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
RepRegClassForVT[i] = RRC;
RepRegClassCostForVT[i] = Cost;
}
}
EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
assert(!VT.isVector() && "No default SetCC type for vectors!");
return getPointerTy(0).SimpleTy;
}
MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
return MVT::i32; // return the default value
}
/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const {
unsigned NumElts = VT.getVectorNumElements();
// If there is a wider vector type with the same element type as this one,
// or a promoted vector type that has the same number of elements which
// are wider, then we should convert to that legal vector type.
// This handles things like <2 x float> -> <4 x float> and
// <4 x i1> -> <4 x i32>.
LegalizeTypeAction TA = getTypeAction(Context, VT);
if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
EVT RegisterEVT = getTypeToTransformTo(Context, VT);
if (isTypeLegal(RegisterEVT)) {
IntermediateVT = RegisterEVT;
RegisterVT = RegisterEVT.getSimpleVT();
NumIntermediates = 1;
return 1;
}
}
// Figure out the right, legal destination reg to copy into.
EVT EltTy = VT.getVectorElementType();
unsigned NumVectorRegs = 1;
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !isTypeLegal(
EVT::getVectorVT(Context, EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
NumIntermediates = NumVectorRegs;
EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
if (!isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
MVT DestVT = getRegisterType(Context, NewVT);
RegisterVT = DestVT;
unsigned NewVTSize = NewVT.getSizeInBits();
// Convert sizes such as i33 to i64.
if (!isPowerOf2_32(NewVTSize))
NewVTSize = NextPowerOf2(NewVTSize);
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
}
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, ReturnType, ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) return;
for (unsigned j = 0, f = NumValues; j != f; ++j) {
EVT VT = ValueVTs[j];
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
ExtendKind = ISD::SIGN_EXTEND;
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
ExtendKind = ISD::ZERO_EXTEND;
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling
// conventions. The frontend should mark functions whose return values
// require promoting with signext or zeroext attributes.
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
if (VT.bitsLT(MinVT))
VT = MinVT;
}
unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
// 'inreg' on function refers to return value
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
Flags.setInReg();
// Propagate extension type if any
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
Flags.setSExt();
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
Flags.setZExt();
for (unsigned i = 0; i < NumParts; ++i)
Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
return TD->getCallFrameTypeAlignment(Ty);
}
//===----------------------------------------------------------------------===//
// TargetTransformInfo Helpers
//===----------------------------------------------------------------------===//
int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/IR/Instruction.def"
};
switch (static_cast<InstructionOpcodes>(Opcode)) {
case Ret: return 0;
case Br: return 0;
case Switch: return 0;
case IndirectBr: return 0;
case Invoke: return 0;
case Resume: return 0;
case Unreachable: return 0;
case Add: return ISD::ADD;
case FAdd: return ISD::FADD;
case Sub: return ISD::SUB;
case FSub: return ISD::FSUB;
case Mul: return ISD::MUL;
case FMul: return ISD::FMUL;
case UDiv: return ISD::UDIV;
case SDiv: return ISD::UDIV;
case FDiv: return ISD::FDIV;
case URem: return ISD::UREM;
case SRem: return ISD::SREM;
case FRem: return ISD::FREM;
case Shl: return ISD::SHL;
case LShr: return ISD::SRL;
case AShr: return ISD::SRA;
case And: return ISD::AND;
case Or: return ISD::OR;
case Xor: return ISD::XOR;
case Alloca: return 0;
case Load: return ISD::LOAD;
case Store: return ISD::STORE;
case GetElementPtr: return 0;
case Fence: return 0;
case AtomicCmpXchg: return 0;
case AtomicRMW: return 0;
case Trunc: return ISD::TRUNCATE;
case ZExt: return ISD::ZERO_EXTEND;
case SExt: return ISD::SIGN_EXTEND;
case FPToUI: return ISD::FP_TO_UINT;
case FPToSI: return ISD::FP_TO_SINT;
case UIToFP: return ISD::UINT_TO_FP;
case SIToFP: return ISD::SINT_TO_FP;
case FPTrunc: return ISD::FP_ROUND;
case FPExt: return ISD::FP_EXTEND;
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
case Call: return 0;
case Select: return ISD::SELECT;
case UserOp1: return 0;
case UserOp2: return 0;
case VAArg: return 0;
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
case InsertElement: return ISD::INSERT_VECTOR_ELT;
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
case ExtractValue: return ISD::MERGE_VALUES;
case InsertValue: return ISD::MERGE_VALUES;
case LandingPad: return 0;
}
llvm_unreachable("Unknown instruction type encountered!");
}
std::pair<unsigned, MVT>
TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
LLVMContext &C = Ty->getContext();
EVT MTy = getValueType(Ty);
unsigned Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
LegalizeKind LK = getTypeConversion(C, MTy);
if (LK.first == TypeLegal)
return std::make_pair(Cost, MTy.getSimpleVT());
if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
Cost *= 2;
// Keep legalizing the type.
MTy = LK.second;
}
}
//===----------------------------------------------------------------------===//
// Loop Strength Reduction hooks
//===----------------------------------------------------------------------===//
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// The default implementation of this implements a conservative RISCy, r+r and
// r+i addr mode.
// Allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// Only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
}
return true;
}