llvm-6502/test/CodeGen/X86/lsr-loop-exit-cond.ll
Andrew Trick 6ea2b9608a Allocate local registers in order for optimal coloring.
Also avoid locals evicting locals just because they want a cheaper register.

Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.

A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.

Other beneficial side effects:

It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.

Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).

Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187139 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-25 18:35:14 +00:00

193 lines
8.0 KiB
LLVM

; RUN: llc -mtriple=x86_64-darwin -mcpu=generic < %s | FileCheck %s
; RUN: llc -mtriple=x86_64-darwin -mcpu=atom < %s | FileCheck -check-prefix=ATOM %s
; CHECK-LABEL: t:
; CHECK: decq
; CHECK-NEXT: movl (%r9,%rax,4), %eax
; CHECK-NEXT: jne
; ATOM-LABEL: t:
; ATOM: movl (%r9,%r{{.+}},4), %eax
; ATOM-NEXT: decq
; ATOM-NEXT: jne
@Te0 = external global [256 x i32] ; <[256 x i32]*> [#uses=5]
@Te1 = external global [256 x i32] ; <[256 x i32]*> [#uses=4]
@Te3 = external global [256 x i32] ; <[256 x i32]*> [#uses=2]
define void @t(i8* nocapture %in, i8* nocapture %out, i32* nocapture %rk, i32 %r) nounwind {
entry:
%0 = load i32* %rk, align 4 ; <i32> [#uses=1]
%1 = getelementptr i32* %rk, i64 1 ; <i32*> [#uses=1]
%2 = load i32* %1, align 4 ; <i32> [#uses=1]
%tmp15 = add i32 %r, -1 ; <i32> [#uses=1]
%tmp.16 = zext i32 %tmp15 to i64 ; <i64> [#uses=2]
br label %bb
bb: ; preds = %bb1, %entry
%indvar = phi i64 [ 0, %entry ], [ %indvar.next, %bb1 ] ; <i64> [#uses=3]
%s1.0 = phi i32 [ %2, %entry ], [ %56, %bb1 ] ; <i32> [#uses=2]
%s0.0 = phi i32 [ %0, %entry ], [ %43, %bb1 ] ; <i32> [#uses=2]
%tmp18 = shl i64 %indvar, 4 ; <i64> [#uses=4]
%rk26 = bitcast i32* %rk to i8* ; <i8*> [#uses=6]
%3 = lshr i32 %s0.0, 24 ; <i32> [#uses=1]
%4 = zext i32 %3 to i64 ; <i64> [#uses=1]
%5 = getelementptr [256 x i32]* @Te0, i64 0, i64 %4 ; <i32*> [#uses=1]
%6 = load i32* %5, align 4 ; <i32> [#uses=1]
%7 = lshr i32 %s1.0, 16 ; <i32> [#uses=1]
%8 = and i32 %7, 255 ; <i32> [#uses=1]
%9 = zext i32 %8 to i64 ; <i64> [#uses=1]
%10 = getelementptr [256 x i32]* @Te1, i64 0, i64 %9 ; <i32*> [#uses=1]
%11 = load i32* %10, align 4 ; <i32> [#uses=1]
%ctg2.sum2728 = or i64 %tmp18, 8 ; <i64> [#uses=1]
%12 = getelementptr i8* %rk26, i64 %ctg2.sum2728 ; <i8*> [#uses=1]
%13 = bitcast i8* %12 to i32* ; <i32*> [#uses=1]
%14 = load i32* %13, align 4 ; <i32> [#uses=1]
%15 = xor i32 %11, %6 ; <i32> [#uses=1]
%16 = xor i32 %15, %14 ; <i32> [#uses=3]
%17 = lshr i32 %s1.0, 24 ; <i32> [#uses=1]
%18 = zext i32 %17 to i64 ; <i64> [#uses=1]
%19 = getelementptr [256 x i32]* @Te0, i64 0, i64 %18 ; <i32*> [#uses=1]
%20 = load i32* %19, align 4 ; <i32> [#uses=1]
%21 = and i32 %s0.0, 255 ; <i32> [#uses=1]
%22 = zext i32 %21 to i64 ; <i64> [#uses=1]
%23 = getelementptr [256 x i32]* @Te3, i64 0, i64 %22 ; <i32*> [#uses=1]
%24 = load i32* %23, align 4 ; <i32> [#uses=1]
%ctg2.sum2930 = or i64 %tmp18, 12 ; <i64> [#uses=1]
%25 = getelementptr i8* %rk26, i64 %ctg2.sum2930 ; <i8*> [#uses=1]
%26 = bitcast i8* %25 to i32* ; <i32*> [#uses=1]
%27 = load i32* %26, align 4 ; <i32> [#uses=1]
%28 = xor i32 %24, %20 ; <i32> [#uses=1]
%29 = xor i32 %28, %27 ; <i32> [#uses=4]
%30 = lshr i32 %16, 24 ; <i32> [#uses=1]
%31 = zext i32 %30 to i64 ; <i64> [#uses=1]
%32 = getelementptr [256 x i32]* @Te0, i64 0, i64 %31 ; <i32*> [#uses=1]
%33 = load i32* %32, align 4 ; <i32> [#uses=2]
%exitcond = icmp eq i64 %indvar, %tmp.16 ; <i1> [#uses=1]
br i1 %exitcond, label %bb2, label %bb1
bb1: ; preds = %bb
%ctg2.sum31 = add i64 %tmp18, 16 ; <i64> [#uses=1]
%34 = getelementptr i8* %rk26, i64 %ctg2.sum31 ; <i8*> [#uses=1]
%35 = bitcast i8* %34 to i32* ; <i32*> [#uses=1]
%36 = lshr i32 %29, 16 ; <i32> [#uses=1]
%37 = and i32 %36, 255 ; <i32> [#uses=1]
%38 = zext i32 %37 to i64 ; <i64> [#uses=1]
%39 = getelementptr [256 x i32]* @Te1, i64 0, i64 %38 ; <i32*> [#uses=1]
%40 = load i32* %39, align 4 ; <i32> [#uses=1]
%41 = load i32* %35, align 4 ; <i32> [#uses=1]
%42 = xor i32 %40, %33 ; <i32> [#uses=1]
%43 = xor i32 %42, %41 ; <i32> [#uses=1]
%44 = lshr i32 %29, 24 ; <i32> [#uses=1]
%45 = zext i32 %44 to i64 ; <i64> [#uses=1]
%46 = getelementptr [256 x i32]* @Te0, i64 0, i64 %45 ; <i32*> [#uses=1]
%47 = load i32* %46, align 4 ; <i32> [#uses=1]
%48 = and i32 %16, 255 ; <i32> [#uses=1]
%49 = zext i32 %48 to i64 ; <i64> [#uses=1]
%50 = getelementptr [256 x i32]* @Te3, i64 0, i64 %49 ; <i32*> [#uses=1]
%51 = load i32* %50, align 4 ; <i32> [#uses=1]
%ctg2.sum32 = add i64 %tmp18, 20 ; <i64> [#uses=1]
%52 = getelementptr i8* %rk26, i64 %ctg2.sum32 ; <i8*> [#uses=1]
%53 = bitcast i8* %52 to i32* ; <i32*> [#uses=1]
%54 = load i32* %53, align 4 ; <i32> [#uses=1]
%55 = xor i32 %51, %47 ; <i32> [#uses=1]
%56 = xor i32 %55, %54 ; <i32> [#uses=1]
%indvar.next = add i64 %indvar, 1 ; <i64> [#uses=1]
br label %bb
bb2: ; preds = %bb
%tmp10 = shl i64 %tmp.16, 4 ; <i64> [#uses=2]
%ctg2.sum = add i64 %tmp10, 16 ; <i64> [#uses=1]
%tmp1213 = getelementptr i8* %rk26, i64 %ctg2.sum ; <i8*> [#uses=1]
%57 = bitcast i8* %tmp1213 to i32* ; <i32*> [#uses=1]
%58 = and i32 %33, -16777216 ; <i32> [#uses=1]
%59 = lshr i32 %29, 16 ; <i32> [#uses=1]
%60 = and i32 %59, 255 ; <i32> [#uses=1]
%61 = zext i32 %60 to i64 ; <i64> [#uses=1]
%62 = getelementptr [256 x i32]* @Te1, i64 0, i64 %61 ; <i32*> [#uses=1]
%63 = load i32* %62, align 4 ; <i32> [#uses=1]
%64 = and i32 %63, 16711680 ; <i32> [#uses=1]
%65 = or i32 %64, %58 ; <i32> [#uses=1]
%66 = load i32* %57, align 4 ; <i32> [#uses=1]
%67 = xor i32 %65, %66 ; <i32> [#uses=2]
%68 = lshr i32 %29, 8 ; <i32> [#uses=1]
%69 = zext i32 %68 to i64 ; <i64> [#uses=1]
%70 = getelementptr [256 x i32]* @Te0, i64 0, i64 %69 ; <i32*> [#uses=1]
%71 = load i32* %70, align 4 ; <i32> [#uses=1]
%72 = and i32 %71, -16777216 ; <i32> [#uses=1]
%73 = and i32 %16, 255 ; <i32> [#uses=1]
%74 = zext i32 %73 to i64 ; <i64> [#uses=1]
%75 = getelementptr [256 x i32]* @Te1, i64 0, i64 %74 ; <i32*> [#uses=1]
%76 = load i32* %75, align 4 ; <i32> [#uses=1]
%77 = and i32 %76, 16711680 ; <i32> [#uses=1]
%78 = or i32 %77, %72 ; <i32> [#uses=1]
%ctg2.sum25 = add i64 %tmp10, 20 ; <i64> [#uses=1]
%79 = getelementptr i8* %rk26, i64 %ctg2.sum25 ; <i8*> [#uses=1]
%80 = bitcast i8* %79 to i32* ; <i32*> [#uses=1]
%81 = load i32* %80, align 4 ; <i32> [#uses=1]
%82 = xor i32 %78, %81 ; <i32> [#uses=2]
%83 = lshr i32 %67, 24 ; <i32> [#uses=1]
%84 = trunc i32 %83 to i8 ; <i8> [#uses=1]
store i8 %84, i8* %out, align 1
%85 = lshr i32 %67, 16 ; <i32> [#uses=1]
%86 = trunc i32 %85 to i8 ; <i8> [#uses=1]
%87 = getelementptr i8* %out, i64 1 ; <i8*> [#uses=1]
store i8 %86, i8* %87, align 1
%88 = getelementptr i8* %out, i64 4 ; <i8*> [#uses=1]
%89 = lshr i32 %82, 24 ; <i32> [#uses=1]
%90 = trunc i32 %89 to i8 ; <i8> [#uses=1]
store i8 %90, i8* %88, align 1
%91 = lshr i32 %82, 16 ; <i32> [#uses=1]
%92 = trunc i32 %91 to i8 ; <i8> [#uses=1]
%93 = getelementptr i8* %out, i64 5 ; <i8*> [#uses=1]
store i8 %92, i8* %93, align 1
ret void
}
; Check that DAGCombiner doesn't mess up the IV update when the exiting value
; is equal to the stride.
; It must not fold (cmp (add iv, 1), 1) --> (cmp iv, 0).
; CHECK-LABEL: f:
; CHECK: %for.body
; CHECK: incl [[IV:%e..]]
; CHECK: cmpl $1, [[IV]]
; CHECK: jne
; CHECK: ret
; ATOM-LABEL: f:
; ATOM: %for.body
; ATOM: incl [[IV:%e..]]
; ATOM: cmpl $1, [[IV]]
; ATOM: jne
; ATOM: ret
define i32 @f(i32 %i, i32* nocapture %a) nounwind uwtable readonly ssp {
entry:
%cmp4 = icmp eq i32 %i, 1
br i1 %cmp4, label %for.end, label %for.body.lr.ph
for.body.lr.ph: ; preds = %entry
%0 = sext i32 %i to i64
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%indvars.iv = phi i64 [ %0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%bi.06 = phi i32 [ 0, %for.body.lr.ph ], [ %i.addr.0.bi.0, %for.body ]
%b.05 = phi i32 [ 0, %for.body.lr.ph ], [ %.b.0, %for.body ]
%arrayidx = getelementptr inbounds i32* %a, i64 %indvars.iv
%1 = load i32* %arrayidx, align 4
%cmp1 = icmp ugt i32 %1, %b.05
%.b.0 = select i1 %cmp1, i32 %1, i32 %b.05
%2 = trunc i64 %indvars.iv to i32
%i.addr.0.bi.0 = select i1 %cmp1, i32 %2, i32 %bi.06
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
%bi.0.lcssa = phi i32 [ 0, %entry ], [ %i.addr.0.bi.0, %for.body ]
ret i32 %bi.0.lcssa
}