llvm-6502/lib/Target/Hexagon/BitTracker.h
Benjamin Kramer 7e320cc2c8 [Hexagon] Use composition instead of inheritance from STL types
The standard containers are not designed to be inherited from, as
illustrated by the MSVC hacks for NodeOrdering. No functional change
intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242616 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-18 17:43:23 +00:00

443 lines
15 KiB
C++

//===--- BitTracker.h -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef BITTRACKER_H
#define BITTRACKER_H
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include <map>
#include <queue>
#include <set>
namespace llvm {
class ConstantInt;
class MachineRegisterInfo;
class MachineBasicBlock;
class MachineInstr;
class MachineOperand;
class raw_ostream;
struct BitTracker {
struct BitRef;
struct RegisterRef;
struct BitValue;
struct BitMask;
struct RegisterCell;
struct MachineEvaluator;
typedef SetVector<const MachineBasicBlock *> BranchTargetList;
typedef std::map<unsigned, RegisterCell> CellMapType;
BitTracker(const MachineEvaluator &E, MachineFunction &F);
~BitTracker();
void run();
void trace(bool On = false) { Trace = On; }
bool has(unsigned Reg) const;
const RegisterCell &lookup(unsigned Reg) const;
RegisterCell get(RegisterRef RR) const;
void put(RegisterRef RR, const RegisterCell &RC);
void subst(RegisterRef OldRR, RegisterRef NewRR);
bool reached(const MachineBasicBlock *B) const;
private:
void visitPHI(const MachineInstr *PI);
void visitNonBranch(const MachineInstr *MI);
void visitBranchesFrom(const MachineInstr *BI);
void visitUsesOf(unsigned Reg);
void reset();
typedef std::pair<int,int> CFGEdge;
typedef std::set<CFGEdge> EdgeSetType;
typedef std::set<const MachineInstr *> InstrSetType;
typedef std::queue<CFGEdge> EdgeQueueType;
EdgeSetType EdgeExec; // Executable flow graph edges.
InstrSetType InstrExec; // Executable instructions.
EdgeQueueType FlowQ; // Work queue of CFG edges.
bool Trace; // Enable tracing for debugging.
const MachineEvaluator &ME;
MachineFunction &MF;
MachineRegisterInfo &MRI;
CellMapType &Map;
};
// Abstraction of a reference to bit at position Pos from a register Reg.
struct BitTracker::BitRef {
BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
BitRef(const BitRef &BR) : Reg(BR.Reg), Pos(BR.Pos) {}
bool operator== (const BitRef &BR) const {
// If Reg is 0, disregard Pos.
return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
}
unsigned Reg;
uint16_t Pos;
};
// Abstraction of a register reference in MachineOperand. It contains the
// register number and the subregister index.
struct BitTracker::RegisterRef {
RegisterRef(unsigned R = 0, unsigned S = 0)
: Reg(R), Sub(S) {}
RegisterRef(const MachineOperand &MO)
: Reg(MO.getReg()), Sub(MO.getSubReg()) {}
unsigned Reg, Sub;
};
// Value that a single bit can take. This is outside of the context of
// any register, it is more of an abstraction of the two-element set of
// possible bit values. One extension here is the "Ref" type, which
// indicates that this bit takes the same value as the bit described by
// RefInfo.
struct BitTracker::BitValue {
enum ValueType {
Top, // Bit not yet defined.
Zero, // Bit = 0.
One, // Bit = 1.
Ref // Bit value same as the one described in RefI.
// Conceptually, there is no explicit "bottom" value: the lattice's
// bottom will be expressed as a "ref to itself", which, in the context
// of registers, could be read as "this value of this bit is defined by
// this bit".
// The ordering is:
// x <= Top,
// Self <= x, where "Self" is "ref to itself".
// This makes the value lattice different for each virtual register
// (even for each bit in the same virtual register), since the "bottom"
// for one register will be a simple "ref" for another register.
// Since we do not store the "Self" bit and register number, the meet
// operation will need to take it as a parameter.
//
// In practice there is a special case for values that are not associa-
// ted with any specific virtual register. An example would be a value
// corresponding to a bit of a physical register, or an intermediate
// value obtained in some computation (such as instruction evaluation).
// Such cases are identical to the usual Ref type, but the register
// number is 0. In such case the Pos field of the reference is ignored.
//
// What is worthy of notice is that in value V (that is a "ref"), as long
// as the RefI.Reg is not 0, it may actually be the same register as the
// one in which V will be contained. If the RefI.Pos refers to the posi-
// tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
// otherwise V is taken to be identical to the referenced bit of the
// same register.
// If RefI.Reg is 0, however, such a reference to the same register is
// not possible. Any value V that is a "ref", and whose RefI.Reg is 0
// is treated as "bottom".
};
ValueType Type;
BitRef RefI;
BitValue(ValueType T = Top) : Type(T) {}
BitValue(bool B) : Type(B ? One : Zero) {}
BitValue(const BitValue &V) : Type(V.Type), RefI(V.RefI) {}
BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
bool operator== (const BitValue &V) const {
if (Type != V.Type)
return false;
if (Type == Ref && !(RefI == V.RefI))
return false;
return true;
}
bool operator!= (const BitValue &V) const {
return !operator==(V);
}
bool is(unsigned T) const {
assert(T == 0 || T == 1);
return T == 0 ? Type == Zero
: (T == 1 ? Type == One : false);
}
// The "meet" operation is the "." operation in a semilattice (L, ., T, B):
// (1) x.x = x
// (2) x.y = y.x
// (3) x.(y.z) = (x.y).z
// (4) x.T = x (i.e. T = "top")
// (5) x.B = B (i.e. B = "bottom")
//
// This "meet" function will update the value of the "*this" object with
// the newly calculated one, and return "true" if the value of *this has
// changed, and "false" otherwise.
// To prove that it satisfies the conditions (1)-(5), it is sufficient
// to show that a relation
// x <= y <=> x.y = x
// defines a partial order (i.e. that "meet" is same as "infimum").
bool meet(const BitValue &V, const BitRef &Self) {
// First, check the cases where there is nothing to be done.
if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
return false;
if (V.Type == Top) // This.meet(Top) = This
return false;
if (*this == V) // This.meet(This) = This
return false;
// At this point, we know that the value of "this" will change.
// If it is Top, it will become the same as V, otherwise it will
// become "bottom" (i.e. Self).
if (Type == Top) {
Type = V.Type;
RefI = V.RefI; // This may be irrelevant, but copy anyway.
return true;
}
// Become "bottom".
Type = Ref;
RefI = Self;
return true;
}
// Create a reference to the bit value V.
static BitValue ref(const BitValue &V);
// Create a "self".
static BitValue self(const BitRef &Self = BitRef());
bool num() const {
return Type == Zero || Type == One;
}
operator bool() const {
assert(Type == Zero || Type == One);
return Type == One;
}
friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
};
// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
inline BitTracker::BitValue
BitTracker::BitValue::ref(const BitValue &V) {
if (V.Type != Ref)
return BitValue(V.Type);
if (V.RefI.Reg != 0)
return BitValue(V.RefI.Reg, V.RefI.Pos);
return self();
}
inline BitTracker::BitValue
BitTracker::BitValue::self(const BitRef &Self) {
return BitValue(Self.Reg, Self.Pos);
}
// A sequence of bits starting from index B up to and including index E.
// If E < B, the mask represents two sections: [0..E] and [B..W) where
// W is the width of the register.
struct BitTracker::BitMask {
BitMask() : B(0), E(0) {}
BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
uint16_t first() const { return B; }
uint16_t last() const { return E; }
private:
uint16_t B, E;
};
// Representation of a register: a list of BitValues.
struct BitTracker::RegisterCell {
RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
uint16_t width() const {
return Bits.size();
}
const BitValue &operator[](uint16_t BitN) const {
assert(BitN < Bits.size());
return Bits[BitN];
}
BitValue &operator[](uint16_t BitN) {
assert(BitN < Bits.size());
return Bits[BitN];
}
bool meet(const RegisterCell &RC, unsigned SelfR);
RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
RegisterCell extract(const BitMask &M) const; // Returns a new cell.
RegisterCell &rol(uint16_t Sh); // Rotate left.
RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
RegisterCell &cat(const RegisterCell &RC); // Concatenate.
uint16_t cl(bool B) const;
uint16_t ct(bool B) const;
bool operator== (const RegisterCell &RC) const;
bool operator!= (const RegisterCell &RC) const {
return !operator==(RC);
}
const RegisterCell &operator=(const RegisterCell &RC) {
Bits = RC.Bits;
return *this;
}
// Generate a "ref" cell for the corresponding register. In the resulting
// cell each bit will be described as being the same as the corresponding
// bit in register Reg (i.e. the cell is "defined" by register Reg).
static RegisterCell self(unsigned Reg, uint16_t Width);
// Generate a "top" cell of given size.
static RegisterCell top(uint16_t Width);
// Generate a cell that is a "ref" to another cell.
static RegisterCell ref(const RegisterCell &C);
private:
// The DefaultBitN is here only to avoid frequent reallocation of the
// memory in the vector.
static const unsigned DefaultBitN = 32;
typedef SmallVector<BitValue, DefaultBitN> BitValueList;
BitValueList Bits;
friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
};
inline bool BitTracker::has(unsigned Reg) const {
return Map.find(Reg) != Map.end();
}
inline const BitTracker::RegisterCell&
BitTracker::lookup(unsigned Reg) const {
CellMapType::const_iterator F = Map.find(Reg);
assert(F != Map.end());
return F->second;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
RegisterCell RC(Width);
for (uint16_t i = 0; i < Width; ++i)
RC.Bits[i] = BitValue::self(BitRef(Reg, i));
return RC;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::top(uint16_t Width) {
RegisterCell RC(Width);
for (uint16_t i = 0; i < Width; ++i)
RC.Bits[i] = BitValue(BitValue::Top);
return RC;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::ref(const RegisterCell &C) {
uint16_t W = C.width();
RegisterCell RC(W);
for (unsigned i = 0; i < W; ++i)
RC[i] = BitValue::ref(C[i]);
return RC;
}
// A class to evaluate target's instructions and update the cell maps.
// This is used internally by the bit tracker. A target that wants to
// utilize this should implement the evaluation functions (noted below)
// in a subclass of this class.
struct BitTracker::MachineEvaluator {
MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
: TRI(T), MRI(M) {}
virtual ~MachineEvaluator() {}
uint16_t getRegBitWidth(const RegisterRef &RR) const;
RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
// A result of any operation should use refs to the source cells, not
// the cells directly. This function is a convenience wrapper to quickly
// generate a ref for a cell corresponding to a register reference.
RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
RegisterCell RC = getCell(RR, M);
return RegisterCell::ref(RC);
}
// Helper functions.
// Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
bool isInt(const RegisterCell &A) const;
// Convert cell to an immediate value.
uint64_t toInt(const RegisterCell &A) const;
// Generate cell from an immediate value.
RegisterCell eIMM(int64_t V, uint16_t W) const;
RegisterCell eIMM(const ConstantInt *CI) const;
// Arithmetic.
RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
// Shifts.
RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
// Logical.
RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eNOT(const RegisterCell &A1) const;
// Set bit, clear bit.
RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
// Count leading/trailing bits (zeros/ones).
RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
// Sign/zero extension.
RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
// Extract/insert
// XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
// INS R,S,b: take R and replace bits starting from b with S.
RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
uint16_t AtN) const;
// User-provided functions for individual targets:
// Return a sub-register mask that indicates which bits in Reg belong
// to the subregister Sub. These bits are assumed to be contiguous in
// the super-register, and have the same ordering in the sub-register
// as in the super-register. It is valid to call this function with
// Sub == 0, in this case, the function should return a mask that spans
// the entire register Reg (which is what the default implementation
// does).
virtual BitMask mask(unsigned Reg, unsigned Sub) const;
// Indicate whether a given register class should be tracked.
virtual bool track(const TargetRegisterClass *RC) const { return true; }
// Evaluate a non-branching machine instruction, given the cell map with
// the input values. Place the results in the Outputs map. Return "true"
// if evaluation succeeded, "false" otherwise.
virtual bool evaluate(const MachineInstr *MI, const CellMapType &Inputs,
CellMapType &Outputs) const;
// Evaluate a branch, given the cell map with the input values. Fill out
// a list of all possible branch targets and indicate (through a flag)
// whether the branch could fall-through. Return "true" if this information
// has been successfully computed, "false" otherwise.
virtual bool evaluate(const MachineInstr *BI, const CellMapType &Inputs,
BranchTargetList &Targets, bool &FallsThru) const = 0;
const TargetRegisterInfo &TRI;
MachineRegisterInfo &MRI;
};
} // end namespace llvm
#endif