llvm-6502/lib/CodeGen/RegAllocFast.cpp
2010-05-17 02:07:22 +00:00

864 lines
30 KiB
C++

//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool> VerifyFastRegalloc("verify-fast-regalloc", cl::Hidden,
cl::desc("Verify machine code before fast regalloc"));
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCopies, "Number of copies coalesced");
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RAFast : public MachineFunctionPass {
public:
static char ID;
RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1),
atEndOfBlock(false) {}
private:
const TargetMachine *TM;
MachineFunction *MF;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// Basic block currently being allocated.
MachineBasicBlock *MBB;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse; // Last instr to use reg.
unsigned PhysReg; // Currently held here.
unsigned short LastOpNum; // OpNum on LastUse.
bool Dirty; // Register needs spill.
LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
Dirty(false) {
assert(p && "Don't create LiveRegs without a PhysReg");
}
};
typedef DenseMap<unsigned, LiveReg> LiveRegMap;
// LiveVirtRegs - This map contains entries for each virtual register
// that is currently available in a physical register.
LiveRegMap LiveVirtRegs;
// RegState - Track the state of a physical register.
enum RegState {
// A disabled register is not available for allocation, but an alias may
// be in use. A register can only be moved out of the disabled state if
// all aliases are disabled.
regDisabled,
// A free register is not currently in use and can be allocated
// immediately without checking aliases.
regFree,
// A reserved register has been assigned expolicitly (e.g., setting up a
// call parameter), and it remains reserved until it is used.
regReserved
// A register state may also be a virtual register number, indication that
// the physical register is currently allocated to a virtual register. In
// that case, LiveVirtRegs contains the inverse mapping.
};
// PhysRegState - One of the RegState enums, or a virtreg.
std::vector<unsigned> PhysRegState;
// UsedInInstr - BitVector of physregs that are used in the current
// instruction, and so cannot be allocated.
BitVector UsedInInstr;
// Allocatable - vector of allocatable physical registers.
BitVector Allocatable;
// atEndOfBlock - This flag is set after allocating all instructions in a
// block, before emitting final spills. When it is set, LiveRegMap is no
// longer updated properly sonce it will be cleared anyway.
bool atEndOfBlock;
public:
virtual const char *getPassName() const {
return "Fast Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool runOnMachineFunction(MachineFunction &Fn);
void AllocateBasicBlock();
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
bool isLastUseOfLocalReg(MachineOperand&);
void addKillFlag(LiveRegMap::iterator i);
void killVirtReg(LiveRegMap::iterator i);
void killVirtReg(unsigned VirtReg);
void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator i,
bool isKill);
void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg,
bool isKill);
void usePhysReg(MachineOperand&);
void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
LiveRegMap::iterator assignVirtToPhysReg(unsigned VirtReg,
unsigned PhysReg);
LiveRegMap::iterator allocVirtReg(MachineInstr *MI, unsigned VirtReg,
unsigned Hint);
unsigned defineVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg,
unsigned Hint);
unsigned reloadVirtReg(MachineInstr *MI,
unsigned OpNum, unsigned VirtReg, unsigned Hint);
void spillAll(MachineInstr *MI);
void setPhysReg(MachineOperand &MO, unsigned PhysReg);
};
char RAFast::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
if (SS != -1)
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
/// its virtual register, and it is guaranteed to be a block-local register.
///
bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
// Check for non-debug uses or defs following MO.
// This is the most likely way to fail - fast path it.
MachineOperand *i = &MO;
while ((i = i->getNextOperandForReg()))
if (!i->isDebug())
return false;
// If the register has ever been spilled or reloaded, we conservatively assume
// it is a global register used in multiple blocks.
if (StackSlotForVirtReg[MO.getReg()] != -1)
return false;
// Check that the use/def chain has exactly one operand - MO.
return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
}
/// addKillFlag - Set kill flags on last use of a virtual register.
void RAFast::addKillFlag(LiveRegMap::iterator lri) {
assert(lri != LiveVirtRegs.end() && "Killing unmapped virtual register");
const LiveReg &LR = lri->second;
if (LR.LastUse) {
MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
if (MO.isDef())
MO.setIsDead();
else if (!LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum))
MO.setIsKill();
}
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(LiveRegMap::iterator lri) {
addKillFlag(lri);
const LiveReg &LR = lri->second;
assert(PhysRegState[LR.PhysReg] == lri->first && "Broken RegState mapping");
PhysRegState[LR.PhysReg] = regFree;
// Erase from LiveVirtRegs unless we're at the end of the block when
// everything will be bulk erased.
if (!atEndOfBlock)
LiveVirtRegs.erase(lri);
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"killVirtReg needs a virtual register");
LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg);
if (lri != LiveVirtRegs.end())
killVirtReg(lri);
}
/// spillVirtReg - This method spills the value specified by VirtReg into the
/// corresponding stack slot if needed. If isKill is set, the register is also
/// killed.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
unsigned VirtReg, bool isKill) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Spilling a physical register is illegal!");
LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg);
assert(lri != LiveVirtRegs.end() && "Spilling unmapped virtual register");
spillVirtReg(MI, lri, isKill);
}
/// spillVirtReg - Do the actual work of spilling.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
LiveRegMap::iterator lri, bool isKill) {
LiveReg &LR = lri->second;
assert(PhysRegState[LR.PhysReg] == lri->first && "Broken RegState mapping");
// If this physreg is used by the instruction, we want to kill it on the
// instruction, not on the spill.
bool spillKill = isKill && LR.LastUse != MI;
if (LR.Dirty) {
LR.Dirty = false;
DEBUG(dbgs() << "Spilling %reg" << lri->first
<< " in " << TRI->getName(LR.PhysReg));
const TargetRegisterClass *RC = MRI->getRegClass(lri->first);
int FI = getStackSpaceFor(lri->first, RC);
DEBUG(dbgs() << " to stack slot #" << FI << "\n");
TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, spillKill, FI, RC, TRI);
++NumStores; // Update statistics
if (spillKill)
LR.LastUse = 0; // Don't kill register again
else if (!isKill) {
MachineInstr *Spill = llvm::prior(MI);
LR.LastUse = Spill;
LR.LastOpNum = Spill->findRegisterUseOperandIdx(LR.PhysReg);
}
}
if (isKill)
killVirtReg(lri);
}
/// spillAll - Spill all dirty virtregs without killing them.
void RAFast::spillAll(MachineInstr *MI) {
SmallVector<unsigned, 16> Dirty;
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i)
if (i->second.Dirty)
Dirty.push_back(i->first);
for (unsigned i = 0, e = Dirty.size(); i != e; ++i)
spillVirtReg(MI, Dirty[i], false);
}
/// usePhysReg - Handle the direct use of a physical register.
/// Check that the register is not used by a virtreg.
/// Kill the physreg, marking it free.
/// This may add implicit kills to MO->getParent() and invalidate MO.
void RAFast::usePhysReg(MachineOperand &MO) {
unsigned PhysReg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
"Bad usePhysReg operand");
switch (PhysRegState[PhysReg]) {
case regDisabled:
break;
case regReserved:
PhysRegState[PhysReg] = regFree;
// Fall through
case regFree:
UsedInInstr.set(PhysReg);
MO.setIsKill();
return;
default:
// The physreg was allocated to a virtual register. That means to value we
// wanted has been clobbered.
llvm_unreachable("Instruction uses an allocated register");
}
// Maybe a superregister is reserved?
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
assert(TRI->isSuperRegister(PhysReg, Alias) &&
"Instruction is not using a subregister of a reserved register");
// Leave the superregister in the working set.
PhysRegState[Alias] = regFree;
UsedInInstr.set(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
UsedInInstr.set(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
}
// Some other alias was in the working set - clear it.
PhysRegState[Alias] = regDisabled;
break;
default:
llvm_unreachable("Instruction uses an alias of an allocated register");
}
}
// All aliases are disabled, bring register into working set.
PhysRegState[PhysReg] = regFree;
UsedInInstr.set(PhysReg);
MO.setIsKill();
}
/// definePhysReg - Mark PhysReg as reserved or free after spilling any
/// virtregs. This is very similar to defineVirtReg except the physreg is
/// reserved instead of allocated.
void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
RegState NewState) {
UsedInInstr.set(PhysReg);
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg, true);
// Fall through.
case regFree:
case regReserved:
PhysRegState[PhysReg] = NewState;
return;
}
// This is a disabled register, disable all aliases.
PhysRegState[PhysReg] = NewState;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
UsedInInstr.set(Alias);
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg, true);
// Fall through.
case regFree:
case regReserved:
PhysRegState[Alias] = regDisabled;
if (TRI->isSuperRegister(PhysReg, Alias))
return;
break;
}
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
RAFast::LiveRegMap::iterator
RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "Assigning %reg" << VirtReg << " to "
<< TRI->getName(PhysReg) << "\n");
PhysRegState[PhysReg] = VirtReg;
return LiveVirtRegs.insert(std::make_pair(VirtReg, PhysReg)).first;
}
/// allocVirtReg - Allocate a physical register for VirtReg.
RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
unsigned VirtReg,
unsigned Hint) {
const unsigned spillCost = 100;
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Can only allocate virtual registers");
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF);
// Ignore invalid hints.
if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
!RC->contains(Hint) || UsedInInstr.test(Hint) ||
!Allocatable.test(Hint)))
Hint = 0;
// If there is no hint, peek at the first use of this register.
if (!Hint && !MRI->use_nodbg_empty(VirtReg)) {
MachineInstr &MI = *MRI->use_nodbg_begin(VirtReg);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
// Copy to physreg -> use physreg as hint.
if (TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
SrcReg == VirtReg && TargetRegisterInfo::isPhysicalRegister(DstReg) &&
RC->contains(DstReg) && !UsedInInstr.test(DstReg) &&
Allocatable.test(DstReg)) {
Hint = DstReg;
DEBUG(dbgs() << "%reg" << VirtReg << " gets hint from " << MI);
}
}
// Take hint when possible.
if (Hint) {
assert(RC->contains(Hint) && !UsedInInstr.test(Hint) &&
Allocatable.test(Hint) && "Invalid hint should have been cleared");
switch(PhysRegState[Hint]) {
case regDisabled:
case regReserved:
break;
default:
spillVirtReg(MI, PhysRegState[Hint], true);
// Fall through.
case regFree:
return assignVirtToPhysReg(VirtReg, Hint);
}
}
// First try to find a completely free register.
unsigned BestCost = 0, BestReg = 0;
bool hasDisabled = false;
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
switch(PhysRegState[PhysReg]) {
case regDisabled:
hasDisabled = true;
case regReserved:
continue;
case regFree:
if (!UsedInInstr.test(PhysReg))
return assignVirtToPhysReg(VirtReg, PhysReg);
continue;
default:
// Grab the first spillable register we meet.
if (!BestReg && !UsedInInstr.test(PhysReg))
BestReg = PhysReg, BestCost = spillCost;
continue;
}
}
DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName()
<< " candidate=" << TRI->getName(BestReg) << "\n");
// Try to extend the working set for RC if there were any disabled registers.
if (hasDisabled && (!BestReg || BestCost >= spillCost)) {
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
if (PhysRegState[PhysReg] != regDisabled || UsedInInstr.test(PhysReg))
continue;
// Calculate the cost of bringing PhysReg into the working set.
unsigned Cost=0;
bool Impossible = false;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
if (UsedInInstr.test(Alias)) {
Impossible = true;
break;
}
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
Impossible = true;
break;
case regFree:
Cost++;
break;
default:
Cost += spillCost;
break;
}
}
if (Impossible) continue;
DEBUG(dbgs() << "- candidate " << TRI->getName(PhysReg)
<< " cost=" << Cost << "\n");
if (!BestReg || Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
if (Cost < spillCost) break;
}
}
}
if (BestReg) {
// BestCost is 0 when all aliases are already disabled.
if (BestCost) {
if (PhysRegState[BestReg] != regDisabled)
spillVirtReg(MI, PhysRegState[BestReg], true);
else {
// Make sure all aliases are disabled.
for (const unsigned *AS = TRI->getAliasSet(BestReg);
unsigned Alias = *AS; ++AS) {
switch (PhysRegState[Alias]) {
case regDisabled:
continue;
case regFree:
PhysRegState[Alias] = regDisabled;
break;
default:
spillVirtReg(MI, PhysRegState[Alias], true);
PhysRegState[Alias] = regDisabled;
break;
}
}
}
}
return assignVirtToPhysReg(VirtReg, BestReg);
}
// Nothing we can do.
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Ran out of registers during register allocation!";
if (MI->isInlineAsm()) {
Msg << "\nPlease check your inline asm statement for "
<< "invalid constraints:\n";
MI->print(Msg, TM);
}
report_fatal_error(Msg.str());
return LiveVirtRegs.end();
}
/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
unsigned RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg);
if (lri == LiveVirtRegs.end())
lri = allocVirtReg(MI, VirtReg, Hint);
else
addKillFlag(lri); // Kill before redefine.
LiveReg &LR = lri->second;
LR.LastUse = MI;
LR.LastOpNum = OpNum;
LR.Dirty = true;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
unsigned RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator lri = LiveVirtRegs.find(VirtReg);
if (lri == LiveVirtRegs.end()) {
lri = allocVirtReg(MI, VirtReg, Hint);
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into "
<< TRI->getName(lri->second.PhysReg) << "\n");
TII->loadRegFromStackSlot(*MBB, MI, lri->second.PhysReg, FrameIndex, RC,
TRI);
++NumLoads;
} else if (lri->second.Dirty) {
MachineOperand &MO = MI->getOperand(OpNum);
if (isLastUseOfLocalReg(MO)) {
DEBUG(dbgs() << "Killing last use: " << MO << "\n");
MO.setIsKill();
} else if (MO.isKill()) {
DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
MO.setIsKill(false);
}
}
LiveReg &LR = lri->second;
LR.LastUse = MI;
LR.LastOpNum = OpNum;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
// setPhysReg - Change MO the refer the PhysReg, considering subregs.
void RAFast::setPhysReg(MachineOperand &MO, unsigned PhysReg) {
if (unsigned Idx = MO.getSubReg()) {
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, Idx) : 0);
MO.setSubReg(0);
} else
MO.setReg(PhysReg);
}
void RAFast::AllocateBasicBlock() {
DEBUG(dbgs() << "\nAllocating " << *MBB);
atEndOfBlock = false;
PhysRegState.assign(TRI->getNumRegs(), regDisabled);
assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
MachineBasicBlock::iterator MII = MBB->begin();
// Add live-in registers as live.
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I)
definePhysReg(MII, *I, regReserved);
SmallVector<unsigned, 8> VirtKills, PhysDefs;
SmallVector<MachineInstr*, 32> Coalesced;
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB->end()) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG({
dbgs() << "\n>> " << *MI << "Regs:";
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
if (PhysRegState[Reg] == regDisabled) continue;
dbgs() << " " << TRI->getName(Reg);
switch(PhysRegState[Reg]) {
case regFree:
break;
case regReserved:
dbgs() << "*";
break;
default:
dbgs() << "=%reg" << PhysRegState[Reg];
if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
dbgs() << "*";
assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
"Bad inverse map");
break;
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i) {
assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
"Bad map key");
assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
"Bad map value");
assert(PhysRegState[i->second.PhysReg] == i->first &&
"Bad inverse map");
}
});
// Debug values are not allowed to change codegen in any way.
if (MI->isDebugValue()) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
LiveRegMap::iterator lri = LiveVirtRegs.find(Reg);
if (lri != LiveVirtRegs.end())
setPhysReg(MO, lri->second.PhysReg);
else
MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry!
}
// Next instruction.
continue;
}
// If this is a copy, we may be able to coalesce.
unsigned CopySrc, CopyDst, CopySrcSub, CopyDstSub;
if (!TII->isMoveInstr(*MI, CopySrc, CopyDst, CopySrcSub, CopyDstSub))
CopySrc = CopyDst = 0;
// Track registers used by instruction.
UsedInInstr.reset();
PhysDefs.clear();
// First scan.
// Mark physreg uses and early clobbers as used.
// Find the end of the virtreg operands
unsigned VirtOpEnd = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg) continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
VirtOpEnd = i+1;
continue;
}
if (!Allocatable.test(Reg)) continue;
if (MO.isUse()) {
usePhysReg(MO);
} else if (MO.isEarlyClobber()) {
definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
PhysDefs.push_back(Reg);
}
}
// Second scan.
// Allocate virtreg uses and early clobbers.
// Collect VirtKills
for (unsigned i = 0; i != VirtOpEnd; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (MO.isUse()) {
unsigned PhysReg = reloadVirtReg(MI, i, Reg, CopyDst);
CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
setPhysReg(MO, PhysReg);
if (MO.isKill())
VirtKills.push_back(Reg);
} else if (MO.isEarlyClobber()) {
unsigned PhysReg = defineVirtReg(MI, i, Reg, 0);
setPhysReg(MO, PhysReg);
PhysDefs.push_back(PhysReg);
}
}
// Process virtreg kills
for (unsigned i = 0, e = VirtKills.size(); i != e; ++i)
killVirtReg(VirtKills[i]);
VirtKills.clear();
MRI->addPhysRegsUsed(UsedInInstr);
// Track registers defined by instruction - early clobbers at this point.
UsedInInstr.reset();
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
unsigned PhysReg = PhysDefs[i];
UsedInInstr.set(PhysReg);
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS)
UsedInInstr.set(Alias);
}
// Third scan.
// Allocate defs and collect dead defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef() || !MO.getReg()) continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (!Allocatable.test(Reg)) continue;
definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
regFree : regReserved);
continue;
}
unsigned PhysReg = defineVirtReg(MI, i, Reg, CopySrc);
if (MO.isDead()) {
VirtKills.push_back(Reg);
CopyDst = 0; // cancel coalescing;
} else
CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
setPhysReg(MO, PhysReg);
}
// Spill all dirty virtregs before a call, in case of an exception.
if (TID.isCall()) {
DEBUG(dbgs() << " Spilling remaining registers before call.\n");
spillAll(MI);
}
// Process virtreg deads.
for (unsigned i = 0, e = VirtKills.size(); i != e; ++i)
killVirtReg(VirtKills[i]);
VirtKills.clear();
MRI->addPhysRegsUsed(UsedInInstr);
if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
DEBUG(dbgs() << "-- coalescing: " << *MI);
Coalesced.push_back(MI);
} else {
DEBUG(dbgs() << "<< " << *MI);
}
}
// Spill all physical registers holding virtual registers now.
atEndOfBlock = true;
MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
if (MI != MBB->end() && MI->getDesc().isReturn()) {
// This is a return block, kill all virtual registers.
DEBUG(dbgs() << "Killing live registers at end of return block.\n");
for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
i != e; ++i)
killVirtReg(i);
} else {
// This is a normal block, spill any dirty virtregs.
DEBUG(dbgs() << "Spilling live registers at end of block.\n");
for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
i != e; ++i)
spillVirtReg(MI, i, true);
}
LiveVirtRegs.clear();
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtsRegs might refer to the instrs.
for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
MBB->erase(Coalesced[i]);
NumCopies += Coalesced.size();
DEBUG(MBB->dump());
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)Fn.getFunction())->getName() << '\n');
if (VerifyFastRegalloc)
Fn.verify(this, true);
MF = &Fn;
MRI = &MF->getRegInfo();
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
UsedInInstr.resize(TRI->getNumRegs());
Allocatable = TRI->getAllocatableSet(*MF);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned LastVirtReg = MRI->getLastVirtReg();
StackSlotForVirtReg.grow(LastVirtReg);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
MBBi != MBBe; ++MBBi) {
MBB = &*MBBi;
AllocateBasicBlock();
}
// Make sure the set of used physregs is closed under subreg operations.
MRI->closePhysRegsUsed(*TRI);
StackSlotForVirtReg.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RAFast();
}