llvm-6502/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
2014-08-26 14:22:05 +00:00

871 lines
32 KiB
C++

//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "RuntimeDyldCheckerImpl.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}
// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
void JITRegistrar::anchor() {}
void ObjectImage::anchor() {}
void ObjectImageCommon::anchor() {}
namespace llvm {
void RuntimeDyldImpl::registerEHFrames() {}
void RuntimeDyldImpl::deregisterEHFrames() {}
#ifndef NDEBUG
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
const unsigned ColsPerRow = 16;
uint8_t *DataAddr = S.Address;
uint64_t LoadAddr = S.LoadAddress;
unsigned StartPadding = LoadAddr & 7;
unsigned BytesRemaining = S.Size;
if (StartPadding) {
dbgs() << "\n" << format("0x%08x", LoadAddr & ~(ColsPerRow - 1)) << ":";
while (StartPadding--)
dbgs() << " ";
}
while (BytesRemaining > 0) {
if ((LoadAddr & (ColsPerRow - 1)) == 0)
dbgs() << "\n" << format("0x%08x", LoadAddr) << ":";
dbgs() << " " << format("%02x", *DataAddr);
++DataAddr;
++LoadAddr;
--BytesRemaining;
}
dbgs() << "\n";
}
#endif
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
MutexGuard locked(lock);
// First, resolve relocations associated with external symbols.
resolveExternalSymbols();
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
// The Section here (Sections[i]) refers to the section in which the
// symbol for the relocation is located. The SectionID in the relocation
// entry provides the section to which the relocation will be applied.
uint64_t Addr = Sections[i].LoadAddress;
DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
<< format("0x%x", Addr) << "\n");
DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
resolveRelocationList(Relocations[i], Addr);
DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
Relocations.erase(i);
}
}
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
MutexGuard locked(lock);
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
if (Sections[i].Address == LocalAddress) {
reassignSectionAddress(i, TargetAddress);
return;
}
}
llvm_unreachable("Attempting to remap address of unknown section!");
}
static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
uint64_t Address;
if (std::error_code EC = Sym.getAddress(Address))
return EC;
if (Address == UnknownAddressOrSize) {
Result = UnknownAddressOrSize;
return object_error::success;
}
const ObjectFile *Obj = Sym.getObject();
section_iterator SecI(Obj->section_begin());
if (std::error_code EC = Sym.getSection(SecI))
return EC;
if (SecI == Obj->section_end()) {
Result = UnknownAddressOrSize;
return object_error::success;
}
uint64_t SectionAddress;
if (std::error_code EC = SecI->getAddress(SectionAddress))
return EC;
Result = Address - SectionAddress;
return object_error::success;
}
ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
MutexGuard locked(lock);
std::unique_ptr<ObjectImage> Obj(InputObject);
if (!Obj)
return nullptr;
// Save information about our target
Arch = (Triple::ArchType)Obj->getArch();
IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
// Compute the memory size required to load all sections to be loaded
// and pass this information to the memory manager
if (MemMgr->needsToReserveAllocationSpace()) {
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
// Symbols found in this object
StringMap<SymbolLoc> LocalSymbols;
// Used sections from the object file
ObjSectionToIDMap LocalSections;
// Common symbols requiring allocation, with their sizes and alignments
CommonSymbolMap CommonSymbols;
// Maximum required total memory to allocate all common symbols
uint64_t CommonSize = 0;
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
++I) {
object::SymbolRef::Type SymType;
StringRef Name;
Check(I->getType(SymType));
Check(I->getName(Name));
uint32_t Flags = I->getFlags();
bool IsCommon = Flags & SymbolRef::SF_Common;
if (IsCommon) {
// Add the common symbols to a list. We'll allocate them all below.
if (!GlobalSymbolTable.count(Name)) {
uint32_t Align;
Check(I->getAlignment(Align));
uint64_t Size = 0;
Check(I->getSize(Size));
CommonSize += Size + Align;
CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
}
} else {
if (SymType == object::SymbolRef::ST_Function ||
SymType == object::SymbolRef::ST_Data ||
SymType == object::SymbolRef::ST_Unknown) {
uint64_t SectOffset;
StringRef SectionData;
bool IsCode;
section_iterator SI = Obj->end_sections();
Check(getOffset(*I, SectOffset));
Check(I->getSection(SI));
if (SI == Obj->end_sections())
continue;
Check(SI->getContents(SectionData));
Check(SI->isText(IsCode));
unsigned SectionID =
findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
<< " flags: " << Flags << " SID: " << SectionID);
GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
}
}
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
}
// Allocate common symbols
if (CommonSize != 0)
emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
SI != SE; ++SI) {
unsigned SectionID = 0;
StubMap Stubs;
section_iterator RelocatedSection = SI->getRelocatedSection();
relocation_iterator I = SI->relocation_begin();
relocation_iterator E = SI->relocation_end();
if (I == E && !ProcessAllSections)
continue;
bool IsCode = false;
Check(RelocatedSection->isText(IsCode));
SectionID =
findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
for (; I != E;)
I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
Stubs);
// If there is an attached checker, notify it about the stubs for this
// section so that they can be verified.
if (Checker)
Checker->registerStubMap(Obj->getImageName(), SectionID, Stubs);
}
// Give the subclasses a chance to tie-up any loose ends.
finalizeLoad(*Obj, LocalSections);
return Obj.release();
}
// A helper method for computeTotalAllocSize.
// Computes the memory size required to allocate sections with the given sizes,
// assuming that all sections are allocated with the given alignment
static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
uint64_t Alignment) {
uint64_t TotalSize = 0;
for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
uint64_t AlignedSize =
(SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
TotalSize += AlignedSize;
}
return TotalSize;
}
// Compute an upper bound of the memory size that is required to load all
// sections
void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
uint64_t &CodeSize,
uint64_t &DataSizeRO,
uint64_t &DataSizeRW) {
// Compute the size of all sections required for execution
std::vector<uint64_t> CodeSectionSizes;
std::vector<uint64_t> ROSectionSizes;
std::vector<uint64_t> RWSectionSizes;
uint64_t MaxAlignment = sizeof(void *);
// Collect sizes of all sections to be loaded;
// also determine the max alignment of all sections
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
bool IsRequired;
Check(Section.isRequiredForExecution(IsRequired));
// Consider only the sections that are required to be loaded for execution
if (IsRequired) {
uint64_t DataSize = 0;
uint64_t Alignment64 = 0;
bool IsCode = false;
bool IsReadOnly = false;
StringRef Name;
Check(Section.getSize(DataSize));
Check(Section.getAlignment(Alignment64));
Check(Section.isText(IsCode));
Check(Section.isReadOnlyData(IsReadOnly));
Check(Section.getName(Name));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
uint64_t SectionSize = DataSize + StubBufSize;
// The .eh_frame section (at least on Linux) needs an extra four bytes
// padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO
// objects.
if (Name == ".eh_frame")
SectionSize += 4;
if (SectionSize > 0) {
// save the total size of the section
if (IsCode) {
CodeSectionSizes.push_back(SectionSize);
} else if (IsReadOnly) {
ROSectionSizes.push_back(SectionSize);
} else {
RWSectionSizes.push_back(SectionSize);
}
// update the max alignment
if (Alignment > MaxAlignment) {
MaxAlignment = Alignment;
}
}
}
}
// Compute the size of all common symbols
uint64_t CommonSize = 0;
for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
++I) {
uint32_t Flags = I->getFlags();
if (Flags & SymbolRef::SF_Common) {
// Add the common symbols to a list. We'll allocate them all below.
uint64_t Size = 0;
Check(I->getSize(Size));
CommonSize += Size;
}
}
if (CommonSize != 0) {
RWSectionSizes.push_back(CommonSize);
}
// Compute the required allocation space for each different type of sections
// (code, read-only data, read-write data) assuming that all sections are
// allocated with the max alignment. Note that we cannot compute with the
// individual alignments of the sections, because then the required size
// depends on the order, in which the sections are allocated.
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
}
// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
const SectionRef &Section) {
unsigned StubSize = getMaxStubSize();
if (StubSize == 0) {
return 0;
}
// FIXME: this is an inefficient way to handle this. We should computed the
// necessary section allocation size in loadObject by walking all the sections
// once.
unsigned StubBufSize = 0;
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
SI != SE; ++SI) {
section_iterator RelSecI = SI->getRelocatedSection();
if (!(RelSecI == Section))
continue;
for (const RelocationRef &Reloc : SI->relocations()) {
(void)Reloc;
StubBufSize += StubSize;
}
}
// Get section data size and alignment
uint64_t Alignment64;
uint64_t DataSize;
Check(Section.getSize(DataSize));
Check(Section.getAlignment(Alignment64));
// Add stubbuf size alignment
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
unsigned StubAlignment = getStubAlignment();
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
if (StubAlignment > EndAlignment)
StubBufSize += StubAlignment - EndAlignment;
return StubBufSize;
}
void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize,
SymbolTableMap &SymbolTable) {
// Allocate memory for the section
unsigned SectionID = Sections.size();
uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
SectionID, StringRef(), false);
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
Sections.push_back(SectionEntry("<common symbols>", Addr, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
<< format("%p", Addr) << " DataSize: " << TotalSize << "\n");
// Assign the address of each symbol
for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
itEnd = CommonSymbols.end(); it != itEnd; ++it) {
uint64_t Size = it->second.first;
uint64_t Align = it->second.second;
StringRef Name;
it->first.getName(Name);
if (Align) {
// This symbol has an alignment requirement.
uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
Addr += AlignOffset;
Offset += AlignOffset;
DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
<< format("%p\n", Addr));
}
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
Offset += Size;
Addr += Size;
}
}
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
const SectionRef &Section, bool IsCode) {
StringRef data;
uint64_t Alignment64;
Check(Section.getContents(data));
Check(Section.getAlignment(Alignment64));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
bool IsRequired;
bool IsVirtual;
bool IsZeroInit;
bool IsReadOnly;
uint64_t DataSize;
unsigned PaddingSize = 0;
unsigned StubBufSize = 0;
StringRef Name;
Check(Section.isRequiredForExecution(IsRequired));
Check(Section.isVirtual(IsVirtual));
Check(Section.isZeroInit(IsZeroInit));
Check(Section.isReadOnlyData(IsReadOnly));
Check(Section.getSize(DataSize));
Check(Section.getName(Name));
StubBufSize = computeSectionStubBufSize(Obj, Section);
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO objects.
if (Name == ".eh_frame")
PaddingSize = 4;
uintptr_t Allocate;
unsigned SectionID = Sections.size();
uint8_t *Addr;
const char *pData = nullptr;
// Some sections, such as debug info, don't need to be loaded for execution.
// Leave those where they are.
if (IsRequired) {
Allocate = DataSize + PaddingSize + StubBufSize;
Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
Name)
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
Name, IsReadOnly);
if (!Addr)
report_fatal_error("Unable to allocate section memory!");
// Virtual sections have no data in the object image, so leave pData = 0
if (!IsVirtual)
pData = data.data();
// Zero-initialize or copy the data from the image
if (IsZeroInit || IsVirtual)
memset(Addr, 0, DataSize);
else
memcpy(Addr, pData, DataSize);
// Fill in any extra bytes we allocated for padding
if (PaddingSize != 0) {
memset(Addr + DataSize, 0, PaddingSize);
// Update the DataSize variable so that the stub offset is set correctly.
DataSize += PaddingSize;
}
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
Obj.updateSectionAddress(Section, (uint64_t)Addr);
} else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
// with these sections).
Allocate = 0;
Addr = nullptr;
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
<< " obj addr: " << format("%p", data.data()) << " new addr: 0"
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
}
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
return SectionID;
}
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
unsigned SectionID = 0;
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
if (i != LocalSections.end())
SectionID = i->second;
else {
SectionID = emitSection(Obj, Section, IsCode);
LocalSections[Section] = SectionID;
}
return SectionID;
}
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
unsigned SectionID) {
Relocations[SectionID].push_back(RE);
}
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
StringRef SymbolName) {
// Relocation by symbol. If the symbol is found in the global symbol table,
// create an appropriate section relocation. Otherwise, add it to
// ExternalSymbolRelocations.
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
if (Loc == GlobalSymbolTable.end()) {
ExternalSymbolRelocations[SymbolName].push_back(RE);
} else {
// Copy the RE since we want to modify its addend.
RelocationEntry RECopy = RE;
RECopy.Addend += Loc->second.second;
Relocations[Loc->second.first].push_back(RECopy);
}
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
unsigned AbiVariant) {
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
// This stub has to be able to access the full address space,
// since symbol lookup won't necessarily find a handy, in-range,
// PLT stub for functions which could be anywhere.
uint32_t *StubAddr = (uint32_t *)Addr;
// Stub can use ip0 (== x16) to calculate address
*StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
StubAddr++;
*StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
StubAddr++;
*StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
StubAddr++;
*StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
StubAddr++;
*StubAddr = 0xd61f0200; // br ip0
return Addr;
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
uint32_t *StubAddr = (uint32_t *)Addr;
*StubAddr = 0xe51ff004; // ldr pc,<label>
return (uint8_t *)++StubAddr;
} else if (Arch == Triple::mipsel || Arch == Triple::mips) {
uint32_t *StubAddr = (uint32_t *)Addr;
// 0: 3c190000 lui t9,%hi(addr).
// 4: 27390000 addiu t9,t9,%lo(addr).
// 8: 03200008 jr t9.
// c: 00000000 nop.
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
*StubAddr = LuiT9Instr;
StubAddr++;
*StubAddr = AdduiT9Instr;
StubAddr++;
*StubAddr = JrT9Instr;
StubAddr++;
*StubAddr = NopInstr;
return Addr;
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
// Depending on which version of the ELF ABI is in use, we need to
// generate one of two variants of the stub. They both start with
// the same sequence to load the target address into r12.
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
if (AbiVariant == 2) {
// PowerPC64 stub ELFv2 ABI: The address points to the function itself.
// The address is already in r12 as required by the ABI. Branch to it.
writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
writeInt32BE(Addr+28, 0x4E800420); // bctr
} else {
// PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
// Load the function address on r11 and sets it to control register. Also
// loads the function TOC in r2 and environment pointer to r11.
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
writeInt32BE(Addr+40, 0x4E800420); // bctr
}
return Addr;
} else if (Arch == Triple::systemz) {
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
writeInt16BE(Addr+2, 0x0000);
writeInt16BE(Addr+4, 0x0004);
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
// 8-byte address stored at Addr + 8
return Addr;
} else if (Arch == Triple::x86_64) {
*Addr = 0xFF; // jmp
*(Addr+1) = 0x25; // rip
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
} else if (Arch == Triple::x86) {
*Addr = 0xE9; // 32-bit pc-relative jump.
}
return Addr;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Relocations can't
// be applied until all the sections have been moved. The client must
// trigger this with a call to MCJIT::finalize() or
// RuntimeDyld::resolveRelocations().
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
Sections[SectionID].LoadAddress = Addr;
}
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const RelocationEntry &RE = Relocs[i];
// Ignore relocations for sections that were not loaded
if (Sections[RE.SectionID].Address == nullptr)
continue;
resolveRelocation(RE, Value);
}
}
void RuntimeDyldImpl::resolveExternalSymbols() {
while (!ExternalSymbolRelocations.empty()) {
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
StringRef Name = i->first();
if (Name.size() == 0) {
// This is an absolute symbol, use an address of zero.
DEBUG(dbgs() << "Resolving absolute relocations."
<< "\n");
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, 0);
} else {
uint64_t Addr = 0;
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
if (Loc == GlobalSymbolTable.end()) {
// This is an external symbol, try to get its address from
// MemoryManager.
Addr = MemMgr->getSymbolAddress(Name.data());
// The call to getSymbolAddress may have caused additional modules to
// be loaded, which may have added new entries to the
// ExternalSymbolRelocations map. Consquently, we need to update our
// iterator. This is also why retrieval of the relocation list
// associated with this symbol is deferred until below this point.
// New entries may have been added to the relocation list.
i = ExternalSymbolRelocations.find(Name);
} else {
// We found the symbol in our global table. It was probably in a
// Module that we loaded previously.
SymbolLoc SymLoc = Loc->second;
Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
}
// FIXME: Implement error handling that doesn't kill the host program!
if (!Addr)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
updateGOTEntries(Name, Addr);
DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
<< format("0x%lx", Addr) << "\n");
// This list may have been updated when we called getSymbolAddress, so
// don't change this code to get the list earlier.
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, Addr);
}
ExternalSymbolRelocations.erase(i);
}
}
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
// FIXME: There's a potential issue lurking here if a single instance of
// RuntimeDyld is used to load multiple objects. The current implementation
// associates a single memory manager with a RuntimeDyld instance. Even
// though the public class spawns a new 'impl' instance for each load,
// they share a single memory manager. This can become a problem when page
// permissions are applied.
Dyld = nullptr;
MM = mm;
ProcessAllSections = false;
Checker = nullptr;
}
RuntimeDyld::~RuntimeDyld() { delete Dyld; }
static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections,
RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
Dyld->setProcessAllSections(ProcessAllSections);
Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
Dyld->setProcessAllSections(ProcessAllSections);
Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
std::unique_ptr<ObjectImage> InputImage;
ObjectFile &Obj = *InputObject;
if (InputObject->isELF()) {
InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
if (!Dyld)
Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker).release();
} else if (InputObject->isMachO()) {
InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
if (!Dyld)
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()),
MM, ProcessAllSections, Checker).release();
} else
report_fatal_error("Incompatible object format!");
if (!Dyld->isCompatibleFile(&Obj))
report_fatal_error("Incompatible object format!");
Dyld->loadObject(InputImage.get());
return InputImage.release();
}
ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
std::unique_ptr<ObjectImage> InputImage;
sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
switch (Type) {
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
case sys::fs::file_magic::elf_core:
InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
if (!Dyld)
Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker).release();
break;
case sys::fs::file_magic::macho_object:
case sys::fs::file_magic::macho_executable:
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
case sys::fs::file_magic::macho_core:
case sys::fs::file_magic::macho_preload_executable:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
case sys::fs::file_magic::macho_dynamic_linker:
case sys::fs::file_magic::macho_bundle:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
case sys::fs::file_magic::macho_dsym_companion:
InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
if (!Dyld)
Dyld = createRuntimeDyldMachO(
static_cast<Triple::ArchType>(InputImage->getArch()),
MM, ProcessAllSections, Checker).release();
break;
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::bitcode:
case sys::fs::file_magic::archive:
case sys::fs::file_magic::coff_object:
case sys::fs::file_magic::coff_import_library:
case sys::fs::file_magic::pecoff_executable:
case sys::fs::file_magic::macho_universal_binary:
case sys::fs::file_magic::windows_resource:
report_fatal_error("Incompatible object format!");
}
if (!Dyld->isCompatibleFormat(InputBuffer))
report_fatal_error("Incompatible object format!");
Dyld->loadObject(InputImage.get());
return InputImage.release();
}
void *RuntimeDyld::getSymbolAddress(StringRef Name) {
if (!Dyld)
return nullptr;
return Dyld->getSymbolAddress(Name);
}
uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
if (!Dyld)
return 0;
return Dyld->getSymbolLoadAddress(Name);
}
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
Dyld->reassignSectionAddress(SectionID, Addr);
}
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
void RuntimeDyld::registerEHFrames() {
if (Dyld)
Dyld->registerEHFrames();
}
void RuntimeDyld::deregisterEHFrames() {
if (Dyld)
Dyld->deregisterEHFrames();
}
} // end namespace llvm